MIEKO YAMADA, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan Self-dual \mathbf{Z}_4 codes generated by Hadamard matrices and conference matices

Active researches on self-dual codes over $\mathbf{Z}_4 = \mathbf{Z}/4\mathbf{Z}$ have been devoted in recent years. A Type II \mathbf{Z}_4 -code is a self-dual code which has the property that all Euclidean weights are divisible by 8 and contains the all-one vector.

A self-dual \mathbb{Z}_4 -code which is not a Type II code is called a Type I \mathbb{Z}_4 -code. A Type IV \mathbb{Z}_4 -code is a self-dual code with all codewords of even Hamming weight. A type IV code which is also Type I or Type II is called a Type IV-I, or a Type IV-II code respectively. Two infinite families of Type IV codes are known, Klemm's codes and $C_{m,r}$ codes.

The distinct rows of an Hadamard matrix are orthogonal. If we recognize the components 1 and -1 of an Hadamard matrix H_{4m} of order 4m as the elements of \mathbb{Z}_4 , then the \mathbb{Z}_4 -code generated by H_{4m} is self-orthogonal. In 1999, Charnes proved that if an Hadamard matrix H_{4m} has order 4m and m is odd, then the \mathbb{Z}_4 -code generated by H_{4m} is self-dual and equivalent to Klemm's code. Charnes and Seberry considered the \mathbb{Z}_4 -code generated by a weighing marix W(n, 4) and proved that if it has type $4^{(n-4)/2}2^4$, then it is a self-dual code. In this talk, we give families of self-dual \mathbb{Z}_4 -codes of Type IV-I and Type IV-II generated by Hadamard matrices and conference matrices.