DHRUV MUBAYI, University of Illinois at Chicago
Turan's theorem with colors
We consider a generalization of Turán's theorem for edge-colored graphs. Suppose that R (red) and B (blue) are graphs on the same vertex set of size n. We conjecture that if R and B each have more than ($1-1 / k$) $n^{2} / 2$ edges, and K is a ($k+1$)-clique whose edges are arbitrarily colored with red and blue, then $R \cup B$ contains a colored copy of K, for all $k+1 \notin\{4,6,8\}$. If $k+1 \in\{4,6,8\}$, then the same conclusion holds except for one specific edge-coloring of K_{k+1}.
We prove this conjecture for all 2-edge-colorings of K_{k+1} that contain a monochromatic K_{k}. This provides a new proof of Turán's theorem. We also prove the conjecture for $k+1 \in\{3,4,5\}$.
This is joint work with Ajit Diwan.

