JONATHON FUNK, University of the West Indies, Cave Hill Campus

Semigroups and toposes

We shall present a strictly semigroup description of the classifying topos $\mathcal{B}(G)$ [?] of an inverse semigroup G. A left *-semigroup is a semigroup S together with an assignment $s \mapsto s^*$ satisfying:

- (i) $(s^*)^* = s$,
- (ii) $ss^*s = s$, and
- (iii) $(s^*st)^* = (st)^*s$,

for all $s,t \in S$. A morphism of left *-semigroups is a function $h \colon S \to T$ such that

- (i) $h(s^*) = h(s)^*$, and
- (ii) $h(st) = h(s)h(s^*st)$.

Such a morphism h is said to be *étale* if every equation t = h(f)t in T, where f is a strong idempotent $(f = f^*f)$ of S, can be lifted uniquely to an equation s = fs in S, meaning h(s) = t.

Proposition 1 $\mathcal{B}(G)$ is equivalent to the category of étale morphisms of left *-semigroups over the inverse semigroup G.

We shall also present a strictly topos description of *E*-unitary inverse semigroups [?]. A $\neg\neg$ -separated object of a topos is one that is separated for the $\neg\neg$ -topology in the topos [?]. (*F* is $\neg\neg$ -separated iff the diagonal subobject $F \rightarrow F \times F$ is equal to its double negation.)

Proposition 2 An inverse semigroup G is E-unitary iff the object $d: G \to E$ of $\mathcal{B}(G)$ is $\neg \neg$ -separated, where E = idempotents of G, and $d(t) = t^*t$.

References

- [1] P. T. Johnstone, Sketches of an Elephant: A Topos Theory Compendium. Clarendon Press, Oxford, 2002.
- [2] A. Kock and I. Moerdijk, Presentations of étendues. Cahiers Topologie Géom. Différentielle Catég. (2) 32(1991), 145-164.
- [3] Mark V. Lawson, Inverse Semigroups: The Theory of Partial Symmetries. World Scientific Publishing Co., Singapore, 1998.