DAVID PITTS, University of Nebraska, Lincoln, NE 68588 Isomorphisms for Triangular Subalgebras of C^* -Diagonals Renault, extending a definition of Kumjian, defines a C^* -diagonal to be a pair $(\mathcal{C}, \mathcal{D})$, where \mathcal{C} is a unital C^* -algebra and $\mathcal{D} \subseteq \mathcal{C}$ is a unital abelian C^* -subalgebra satisfying: - (a) every pure state of \mathcal{D} has a unique extension to a pure state of \mathcal{C} , - (b) $\overline{\operatorname{span}}\{v \in \mathcal{C} : v\mathcal{D}v^* \cup v^*\mathcal{D}v \subseteq \mathcal{D}\} = \mathcal{C}$, and - (c) the unique conditional expectation $E \colon \mathcal{C} \to \mathcal{D}$ (existence is implied by (a)) is faithful. A norm-closed subalgebra $\mathcal{A}\subseteq\mathcal{C}$ is triangular if $\mathcal{A}\cap\mathcal{A}^*=\mathcal{D}.$ In this talk, I will discuss the following result: **Theorem** For i=1,2 suppose (C_i, D_i) are C^* -diagonals and $A_i \subseteq C_i$ is triangular. Then any bounded isomorphism $\theta \colon A_1 \to A_2$ is completely bounded with $\|\theta\|_{cb} = \|\theta\|$. Let $\mathcal{B}_i \subseteq \mathcal{C}_i$ be the C^* -subalgebra of \mathcal{C}_i generated by \mathcal{A}_i . It turns out that \mathcal{B}_i is the C^* -envelope of \mathcal{A}_i . Thus, when θ is isometric, the theorem implies that θ extends to a *-isomorphism of \mathcal{B}_1 onto \mathcal{B}_2 . This provides a new proof for, and an extension of, a result of Muhly, Qiu and Solel.