Let X be a complex manifold, Y be an open subset of X and let ϕ be an upper semicontinuous function on Y. Consider the space $H(X, Y)$ of all analytic disks in X whose boundaries lie in Y. On this space we introduce an equivalence relation: two analytic disks are equivalent if their centers coincide and they can be connected by a continuous curve in $H(X, Y)$. We show that on the set Y' of equivalence classes there is a local homeomorphism ρ into X that defines on Y' a structure of a complex manifold.

We define the relative disk envelope of ϕ on X as the infimum of the integrals of ϕ over the boundaries of all analytic disks in $H(X, Y)$ with centers at $z_0 \in X$ and boundaries in Y. As the result we get a function on Y'' which is plurisubharmonic. This approach immediately generates many geometric questions that will be also discussed.