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Multidegrees, their computation, and applications

Homogeneous polynomials can be interpreted as T-equivariant cohomology classes on affine space. Having positive coefficients
is a sign that they are geometric, or more precisely, “effective”, being representable as the class of a T-invariant subscheme.
With such a geometric interpretation in hand, there are various ways to compute the class in automatically positive ways.

I'll explain a couple of general recipes for doing this, one being “geometric vertex decompositions”, and apply them to matrix
Schubert varieties; one payoff will be a bunch of old and new formulz for double Schubert (and Grothendieck) polynomials.
It's not too much of a surprise, though, that geometry helps one compute Schubert polynomials, as they have a geometric
origin. So I'll also talk about a very surprising application of multidegrees in statistical mechanics, where the combinatorics
predated the geometry, and is still very mysterious.
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