|
|
|
|
|
Combinatorics / Combinatoire (C. Chauvre, S. Corteel and P. Leroux, Organizers)
- F. BERGERON, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville,
Montréal, Québec H3C 3P8
Ideals of quasi-symmetric polynomials and related varieties
-
For many nice families of ideals generated by quasi-symmetric
polynomials in n variables, x1¼xn, we give explicit
description of their (reduced) Gröbner basis. This implies that we
have explicit combinatorial descriptions for basis of the quotient of
the ring of polynomials in x1¼xn by each of these ideals.
The dimension (and Hilbert series) of these spaces are very nice from a
combinatorial view point.
- M. BOUSQUET, LaCIM, UQAM, Case Postale 8888, succursale Centre-ville,
Montréal, Québec H3C 3P8
Dénombrement de 2-arbres solides
-
Le but de ce travail est d'obtenir l'énumération des 2-arbres
solides selon le nombre d'arêtes (ou de triangles) ainsi que selon la
distribution des degrés des arêtes. Nous obtenons d'abord le
dénombrement des 2-arbres solides orientés en utilisant les
méthodes de la théorie des espèces. Pour obtenir le
dénombrement des 2-arbres solides non orientés, nous utilisons la
notion d'espèce quotient qui provient d'une spécialisation de la
théorie de Pólya.
The main goal of thiswoorkr is to enumerate solid 2-trees according
to the number of edges (or triangles) and also according to the edge
degree distribution. We first enumerate oriented solid 2-trees using
the general methods of the theory of species. In order to obtain non
oriented enumeration formulas we use quotient species which consists in
a specialization of Pólya theory.
- M. BOUSQUET-MELOU, CNRS, Université Bordeaux 1, Talence Cedex, France
Walks in a quarter plane
-
We study planar walks that start from a given point (i0,j0), take
their steps in a finite set \frak S, and are confined in the first
quadrant x ³ 0, y ³ 0. Their enumeration can be attacked in a
systematic way: the generating function Q(x,y;t) that counts them by
their length (variable t) and the coordinates of their endpoint
(variables x,y) satisfies a linear functional equation encoding the
step-by-step description of walks. For instance, for the square lattice
walks starting from the origin, this equation reads
|
æ è
|
xy -t(x+y+x2y+xy2) |
ö ø
|
Q(x,y;t)=xy-xtQ(x,0;t)-ytQ(0,y;t). |
|
The central question addressed in this talk is the nature of the
series Q(x,y;t). When is it algebraic? When is it D-finite (or
holonomic)? Can these properties be derived from the functional
equation itself?
Our first result is a new proof of an old theorem due to Kreweras,
according to which one of these walk models has, for mysterious
reasons, an algebraic generating function. Then, we provide a new
proof of a holonomy criterion recently proved by M. Petkovsek and
the author. Finally, we exhibit a simple model with a non-holonomic
generating function (joint work with M. Petkovsek). In all cases, we
work directly from the functional equation.
- GERARD DUCHAMP, Rouen
Algèbres de Hopf de fonctions quasi-symétriques
non commutatives / Hopf algebras of non commutative quasi-symmetric
functions
-
On construit diverses algèbres de Hopf généralisant celles des
fonctions symétriques et quasi-symtriques.
We contruct various Hopf Algebras generalizing the Hopf Algebras of
Symmetric and Quasi-Symmetric Functions.
- I. GESSEL, Brandeis University, Waltham, Massachusetts 02454, USA
Two-stack-sortable multipermutations
-
To ``stack-sort'' a permutation we represent the permutation as a
binary decreasing tree, and then read the tree in postorder. A
permutation is called two-stack-sortable if stack-sorting it
twice yields an identity permutation.
Doron Zeilberger proved Julian West's conjecture that the number of
two-stack-sortable permutations of {1,2,¼,n} is
2(3n)!/((n+1)! (2n+1)!). Bousquet-Mélou, Bóna, and
Travis independently refined Zeilberger's result by showing that the
number of two-stack-sortable permutations of {1,2,¼, i+j+1}
with i descents is
|
(2i+j+1)! (i+2j+1)! (i+1)! (2i+1)! (j+1)! (2j+1)!
|
. |
|
We consider a generalization of the stack-sorting operation in which
binary decreasing trees are replaced by (r+1)-ary decreasing trees.
These trees correspond to certain multiset permutations called
``r-permutations'', which reduce to ordinary permutations when
r=1. We generalize the result of Bousquet-Mélou, Bóna, and
Travis to r-permutations. We classify the descents of
r-permutations into r types and show that the number of
two-stack-sortable r-permutations with il descents of type l for
l=1,¼,r is
|
1 n2
|
|
r Õ
l=0
|
|
n n-il
|
\binom2n-il-1il, |
|
where n=1+i0+¼+ir.
This is joint work with Dapeng Xu.
- IAN GOULDEN, University of Waterloo, Waterloo, Ontario N2L 3G1
Hurwitz numbers and combinatorics
-
>From a geometric point of view, Hurwitz numbers count ramified covers
of the sphere by a Riemann surface of specified genus, with branching
above infinity specified by a specified partition, and simple branching
above other prescribed points. From a combinatorial point of view,
these are equivalent to a particular class of ordered factorizations in
the symmetric group. We describe recent results and conjectures for
Hurwitz numbers and generalizations that have been obtained from this
combinatorial point of view.
- A. GOUPIL, Université du Québec à Montréal,
Montréal, Québec H3C 3P8
Polynômes de classes de Sn / Class Polynomials of Sn
-
A chaque classe de conjugaison Cm du groupe sym\' etrique Sn,
nous associons un polynôme symétrique wm(x) que nous appelons
polynôme de classe. Lorsque les polynômes wm(x) `sont'
valués sur les contenus d'un partage l de n, on obtient le
caractère irréductible normalisé [(|Cm|)/(fl )]clm. Les polynômes de classes
forment une nouvelle base de l'espace L des polynômes
symétriques. De plus, le produit wm(x) wa(x) se
décompose dans la base { wm(x)}m comme le produit de
classes Cm *Cl se décompose dans la base {Cm}m du
centre de l'algèbre C[S¥] du groupe symétrique
infini. Nous utilisons les polynômes wm(x) pour mettre au point
des formules énumératives pour le nombre de tableaux standards
gauches f(l/m) et pour les nombres de Kostka Kl/m. De plus,
nous construisons des q-analogues des polynômes wm(x) pour l'
algèbre de Hecke du groupe symétrique.
To each conjugacy class Cm of the symmetric group Sn, we
associate a symmetric polynomial wm(x) that we call class
polynomial. When the polynomial wm(x) is evaluated on the content
of a partition l of n, we obtain the normalized irreducible
character [(|Cm|)/(fl )]clm. The set of
class polynomials forms a new linear basis for the space L of
symmetric polynomials. Furthermore, the product wm(x)wa(x)
decomposes in the basis {wm(x)}m precisely as the product of
classes Cm*Cl decomposes in the basis {Cm}m of the
center of the algebra C[S¥] of the infinite symmetric
group. We use the polynoms wm(x) to establish enumerative formulae
for the number f(l/m) of skew standard tableaux and for the Kostka
numbers Kl/m. We also construct q-analogs of the polynomials
wm(x) for the Hecke algebra of Sn.
- G. LABELLE, Université du Québec à Montréal, Montréal, Québec
Structures partiellement étiquetées asymétriques
-
Soit ZF la série indicatrice des cycles d'une espèce F. En
conformité avec la théorie de Pólya, on a la formule ZF°G = ZF°ZG, même lorsque G(0) ¹ 0. Cependant, dans le
cas de la série indicatrice d'asymétrie, GF, des exemples
simples montrent que l'égalité n'a généralement pas lieu,
c.-à-d., GF°G ¹ GF°GG, lorsque
G(0) ¹ 0; bien qu'elle ait toujours lieu lorsque G(0)=0. Nous
introduisons une variante, GF, x, de la série GF
qui satisfait l'égalité GF°G = GF, x°GG, où x = G(0). Nous étudions le comportement de la
série GF, x face aux opérations combinatoires, en
présentons divers exemples explicites et les appliquons au
dénombrement de quelques classes de structures partiellement
étiquetées asymétriques.
- P. LALONDE, LaCIM, UQAM
Partitions planes descendantes et dualité de chemins
-
Les partitions planes descendantes apparaissent dans les conjectures de
Mills, Robbins et Rumsey : elles seraient en bijection avec matrices
à signes alternants. Ces partitions forment un ensemble
partiellement ordonné qui possède un unique anti-automorphisme,
noté t. D après les conjectures, t se traduirait en
une op'eration très simple sur les matrices à signes alternants : la
réflexion suivant un axe vertical. Pourtant, la description directe
de t dans le cadre des partitions planes descendantes est assez
complexe.
On peut cependant utiliser la méthodologie de Gessel-Viennot pour
coder ces partitions en configurations de chemins sans intersection.
On retrouve alors une description simple de t : il s agit de la
dualité de chemins, mise en évidence (dans d autres contextes)
par ces mêmes auteurs.
- V. LISKOVETS, Institute of Mathematics, National Academy of Sciences of Belarus,
Minsk, 220072 Belarus
Some asymptotic distribution patterns for planar maps
-
We focus mainly on two different asymptotic cardinality patterns for
planar maps. They are of the form CnbRn (as n, the number of
edges, tends to infinity), where b=-5/2 or -3/2 and C and R > 1
are constants depending on the maps under consideration. The value
-5/2 of the ``critical exponent'' b is known to be valid for a
large family of classes of rooted maps such as arbitrary,
non-separable, polyhedral, cubic and Eulerian maps. On the contrary,
b=-3/2 for various classes of rooted outerplanar maps (including
plane trees) as well as maps of some singular types. We retrieve both
of these values as particular cases of a general unified pattern and
present some evidence and some simple arguments that justify this
approach. This idea is illustrated in more detail for two specific
classes of maps: Eulerian and self-dual.
Another pattern to be discussed briefly concerns the tail distribution
of vertices by valency. We also touch on counting the total number of
vertices in rooted maps.
- PETER MCNAMARA, MIT
-
- MARNI MISHNA, LaCIM/UQAM
-
- J. MORSE, University of Pennsylvania
k-Schur functions and Kostka coefficients
-
We introduce a family of symmetric functions called the k-Schur
functions and show how these elements generalize the Schur functions.
We then discuss how a new type of tableaux could lead to finding
expansion coefficients for the Hall-Littlewood and Macdonald
polynomials in terms of k-Schur functions.
- I. PAK, MIT, Cambridge, Massachusetts, USA
Fighting the involution principle
-
About 20 years ago, Garsia and Milne introduced the involution
principle, which quickly became a powerful tool for creating
bijections out of existing analytic proofs. Despite its popularity, the
resulting bijections often lack simplicity and transparency, in
contrast with many ``traditional'' bijections. This is our first
attempt to understand and explain this striking phenomenon.
In this talk we restrict ourselves to the well studied case of Andrews'
partition identities, which generalize the classical Euler's identity
(the number of partitions of n into odd parts is equal to the number
of partitions of n into distinct parts.) These were later extended by
Cohen and Remmel. The latter also found a bijective proof by the
involution principle, which was studied further by O'Hara. We will
generalize these identities even further, and present an algebraic
approach to bijection in these cases.
- F. RUSKEY, University of Victoria, Victoria, British Columbia
Counting aperiodic strings with given elementary symmetric
function evaluations
-
For fixed k and values t[1¼k] we try to count the number of
aperiodic strings a[1¼n] for which Sk(a) = tk, where Sk
is the k-th elementary symmetric function. The alphabet of the
string a is a ring R. After setting up a general framework,
specific results are given for the following cases:
(a) R is Z(q), the ring of integers mod q, and k=1, or q=4
and k=2.
(b) R is F(q), the finite field of q elements, and k = 3.
Using (b), we are able to count the number of odd degree monic
irreducible polynomials over F(q) whose next 3 leading coefficients
are prespecified and whose degree is odd. The efficacy of our formulae
will be stated in rops, the number of ring operations necessary to
evaluate them. Part of the development involves a new multivariate
form of Mobius inversion.
- C. SAVAGE, North Carolina State University, Raleigh, North Carolina, USA
Anti-lecture hall compositions
-
In 1997, Bousquet-Mélou and Eriksson proved a surprising result,
known as the Lecture Hall Theorem: The number of partitions
l = (l1,¼,lk) of n satisfying
|
l1 k
|
³ |
l2 k-1
|
³ ¼ ³ |
lk-1 2
|
³ |
lk 1
|
³ 0 |
|
is equal to the number of partitions of n into odd parts of size at
most 2k-1. In this talk, we prove the Anti-lecture Hall
Theorem, a corresponding result about the number of compositions
l = (l1,¼,lk) of n satisfying
To our knowledge this is a new result that complements the family of
the lecture hall theorems. This is joint work with Sylvie Corteel.
- G. SCHAEFFER, Loria-CNRS, ampus Sciences, Vandoeuvre-les-Nancy
The diameter of random planar maps
-
A planar map is a proper embedding of a graph in the sphere, considered
up to homeomorphisms of the sphere. Following the work of Tutte in the
sixties, various families of planar maps (triangulations,
quadrangulations, eulerian, etc.) have been (and still are)
enumerated with respect to their number of edges, vertices (see
Liskovets' talk here).
We shall consider the uniform distribution on quadrangulations with n
faces, and view them as random discretised surfaces. Combining
bijections and enumerative results with probabilistic ideas, we show
that one can study distances in these random quadrangulations. In
particular the diameter of a random quandrangulation with n faces
behave like n(1/4).
- R. STANLEY, MIT, Cambridge, Massachusetts, USA
Kerov's character polynomial and irreducible symmetric group
of rectangular shape
-
Shortly before his untimely death in 2000 Sergei Kerov introduced in a
lecture a polynomial Sk(R2,R3,...,Rk+1) which encodes
the value cl(w) of any irreducible character cl
of the symmetric group Sn (for any n) at a k-cycle
w. For instance, S2=R3, S3=R4+R2,
S4=R5+5R3, S5 = R6+15R4+5R22+8R2. This polynomial
is not well-understood, e.g., it is not known whether its
coefficients are nonnegative. The coefficients of the linear terms
Ri, however, have a combinatorial interpretation, first obtained by
P. Biane. There is an alternative proof based on a new formula for
cl(w), for any w Î Spq, when l has
p parts all equal to q. It is an interesting open problem to extend
this result to more general l.
- B. VAN RENSBURG, York University, Toronto, Ontario M3J 1P3
Exchange relations, Dyck paths and copolymer adsorption
-
A certain model of directed copolymer adsorption is equivalent to the
enumeration of Dyck paths. We exploit a type of symmetry (we call this
an exchange relation) to solve a specific model of an infinite family of
periodically coloured copolymers adsorbing in a wall. We also find an
asymptotic expression for the critical adsorption point in these models
as a function of the period of the colouring. This is collaborative
work with Andrew Rechnitzer.
- X. VIENNOT, LaBRI, Université Bordeaux I, 33405 Talence, France
Gravitation quantique Lorentzienne et empilements de
dominos / Lorentzian quantum gravity and heaps of dimers
-
La théorie des empilements de pièces fut introduite par l'orateur
en 1985 afin de donner une vision ``géométrique'' de la théorie
algébrique des monoïdes de commutations développée par Cartier
et Foata en 1969. Ces empilements de pièces permettent d'unifier ou
d'interpréter diverses théories combinatoires (polynômes
orthogonaux, polynômes chromatiques, etc).
Des interactions et applications ont été développées par
l'école bordelaise vers la physique statistique: modèles des
animaux dirigés, de gaz avec particules dures, le modèle SOS,
polyominos et fonctions q-Bessel, etc...
Cet exposé a pour but de relater une nouvelle application des
empilements de pièces vers un tout autre domaine de la physique thé
orique: la gravitation quantique Lorentzienne en dimension 2. Cette
application fut développée récemment par P. Di Francesco,
E. Guitter, C. Kristjansen, faisant suite aux travaux de J. Ambjorn et
R. Loll. L'espace temps est discrétisé par des triangulations
dites Lorentziennes. Le modèle de physique revient à expliciter
certaines sé ries génératrices relatives à ces objets
combinatoires. La résolution du modèle donnée par ces physiciens
provient de lemmes et bijections de base sur les empilements de
pièces.
The theory of heaps of pieces was introduced by the author in 1985 in
order to give a ``geometric'' version of the algebraic theory of
commutation monoids developed by Cartier and Foata in 1969. These heaps
of pieces unify and give interpretations of various combinatorial
theories (orthogonal polynomials, chromatic polynomials, etc).
Interactions and applications with statistical mechanics have been
developed by the Bordeaux school: directed animal model, gaz model with
hard core interactions SOS model, polyominoes and q-Bessel functions,
etc...
The purpose of this talk is to expose a new application of the theory
of heaps of pieces to another chapter of theoretical physics: 2D
Lorentzian quantum gravity. This application has been recently
developed by P. Di Francesco, E. Guitter, C. Kristjansen, following
work of J. Ambjorn and R. Loll. The space time is discretized by some
triangulations called Lorentzian. The physics model is equivalent to
give explicit expressions for certain generating functions related to
these combinatorial objects. The solution of the model given by these
physicists comes from some basic lemma and bijections about heaps of
pieces.
- T.R. WALSH, Department of Computer Science, UQÀM, Montreal,
Quebec H3C-3P8
Génération de chaque mot d'un code gray en temps constant /
Constant time generation of each word of a gray code
-
Un mot de longueur n est une suite finie g[1],g[2],...,g[n] de
lettres, qui sont des membres d'un ensemble fini, un alphabet. Un code
Gray est une famille infinie L1, L2,..., où Ln est une liste
de mots, tous de longueur n, telle que chaque mot sauf le premier
dans chaque liste Ln est obtenue de son prédécesseur en
changeant un nombre de lettres borné indépendamment de n. Il y a
des codes Gray pour beaucoup d'objets combinatoires: chaînes
binaires, combinaisons, permutations, compositions d'un entier,
partages d'un ensemble, partages d'un entier, mots de Dyck et d'autres
représentations des arbres binaires. Pour quelques-uns de ces codes
Gray-chaînes binaires, combinaisons, permutations, compositions
d'un entier et partages d'un ensemble-G. Ehrlich a trouvé des
algorithmes pour engendrer chaque mot sauf le premier en temps borné
indépendamment de la longueur des mots et sa mé thode a été
appliquée par d'autres chercheurs aux autres codes Gray. Dans cette
confér ence il est démontré que sa méthode marche pour tout
code Gray tel que tous les mots dans une liste avec le même pré
fixe g[1],g[2],...,g[i-1] forment un intervalle de mots
consécutifs dans lequel la prochaine lettre g[i] atteint au moins
deux valeurs distinctes. En plus, sa méthode est généralisée
pour permettre g[i] de n'atteindre qu'une seule valeur si un seul mot
a le préfixe g[1],g[2],...,g[i-1]-cette condition est satisfaite
par la vaste majorité de codes Gray dans la littérature. Un
nouveau code Gray est présenté pour les compositions d'un entier
avec chaque partie bornée entre 0 et un entier positif et pour les
permutations de {1,2,...,n} avec r inversions dont les vecteurs
d'inversions sont les compositions de r avec n-1 parties bornées
par n-1,n-2,...,2,1; la généralisation de la méthode
d'Ehrlich permet la génération de ces objets en temps constant.
A length-n word is a finite chain g[1],g[2],...,g[n] of letters
which are elements of a finite set, an alphabet. A Gray code is an
infinite family L1, L2,..., where Ln is a list of length-n
words such that every word except the first one in each list Ln is
obtained from its predecessor by changing a number of letters bounded
independently of n. There are Gray codes for many combinatorial
objects: binary chains, combinations, permutations, integer
compositions, set partitions, integer partitions, Dyck words and other
representations of binary trees. For some of these Gray codes-binary
chains, combinations, permutations, integer compositions and set
partitions-G. Ehrlich found algorithms for generating each word
except the first one in a time bounded independently of the word length
and his method has been applied by other researchers to other Gray
codes. In this talk we prove that his method works for any Gray code
such that all the words in a list with the same prefix
g[1],g[2],...,g[i-1] form an interval of consecutive words in which
the next letter g[i] takes at least two distinct values.
Furthermore, we generalize his method to allow g[i] to take only one
value if only one word has the prefix g[1],g[2],...,g[i-1]-this
condition is satisfied by the vast majority of Gray codes in the
literature. We present a new Gray code for integer compositions with
each part bounded between 0 and a positive integer and for the
permutations of {1,2,...,n} with r inversions whose inversion
vectors are the compositions of r with n-1 parts bounded by
n-1,n-2,...,2,1; using the generalisation of Ehrlich's method we
generate each of these objects in constant time.
- J. WEST, University of Victoria, Victoria, British Columbia
Somos sequences and perfect matchings
-
Linear recurrences (and, with them, ordinary generating functions) are
ubiquitous in combinatorics, as part of a broad general framework that
is well-studied and well-understood; in contrast, bilinear recurrences
such as sn+4 = (sn+1sn+3+sn+22)/sn are encountered
far less often, and these encounters tend to be viewed in isolation
from one another.
The bilinear recurrence relation quoted above is the Somos-4
recurrence, part of a general family of ën/2û-degree
sequences. Although these have received a fair bit of attention in the
past few years, until recently algebra remained one step ahead of
combinatorics, leaving us temporarily in the unusual position of being
able to enumerate combinatorial objects for which we lack a
combinatorial description.
In this talk, we produce a family of graphs whose perfect matchings are
enumerated by the Somos-4 sequence, and a second family whose perfect
matchings are enumerated by Somos-5. The recurrences that govern these
sequences are also special cases of the Gale-Robinson family of
recurrences: S(n)=[S(n-i1)S(n-i2)+S(n-j1)S(n-j2)]/S(n-k), where
k=i1+i2=j1+j2. The results for Somos-4 and Somos-5 thus give us
some hope that a similar family of graphs can be constructed for any
Gale-Robinson recurrence.
This is joint work with Jim Propp and Mireille Bousquet-Melou. Many of
these results have also been obtained independently by Propp's team of
undergraduate researchers at Harvard.
- C. YAN, Texas A&M University, College Station, USA
Goncarov polynomials and parking functions
-
The Goncarov polynomials gn(x;a0,a1,¼,an-1) are
polynomials defined by the biorthogonality relation:
e(ai) Di gn(x;a0,a1,¼,an-1) = n! din, |
|
where e(a) is evaluation at a. Goncarov polynomials
form a natural basis for generalized parking functions. In particular,
expanding xn as a linear combination of Goncarov polynomials
leads to a decomposition of an arbitrary sequences of positive integers
into two subsequences: a maximum parking function and a subsequence of
higher values. From this combinatorial decomposition, we derive linear
recursions for sum enumerators, expected sums of u-parking
functions, and higher moments of sums of u-parking
functions. These recursions yield explicit formulas for these
quantities in terms of Goncarov polynomials.
- DORON ZEILBERGER, Rutgers University, New Brunswick, New Jersey 08903, USA
Deranged Wilf classes
-
Aaron Robertson found a surprising and deep refinement of the classical
enumerative results that the number of 132-avoiding permutations equals
the number of 123-avoiding permutations. This is probably but
the tip of a beautiful deranged theory of Wilf Classes.
- J. ZENG, Institut Girard Desargues, Universite Lyon 1, 43, Bd du 11
Novembre 1918, 69622 Villeurbanne Cedex, France
New identities of Hall-Littlewood polynomials and new
identities of Rogers-Ramanujan type
-
Starting from Macdonald's summation formula of Hall-Littlewood
polynomials over bounded partitions and its even partition analogue,
Stembridge (Trans. Amer. Math. Soc. (2) 319(1990), 469-498)
derived sixteen multiple q-identities of Rogers-Ramanujan type.
Inspired by our recent results on Schur functions (Adv. Appl. Math.
27(2001), 493-509) and based on computer experiments we obtain
two further such summation formulae of Hall-Littlewood polynomials over
bounded partitions and derive six new multiple q-identities of
Rogers-Ramanujan type. This talk is base on joint works with
F. Jouhet.
|
|