MARTIN PINSONNAULT, Fields Institute & University of Toronto

Maximal Tori in the Hamiltonian groups of 4-manifolds

Let (M,ω) be a symplectic 4-manifold. Let Symp be its group of symplectomorphisms and denote by Ham its subgroup of Hamiltonian diffeomorphisms. Let $\mathcal M$ be the set of maximal tori in Ham and let $\mathcal T$ be the subset of 2-dimensional tori. Both Symp and Ham act by conjugation on $\mathcal M$ and $\mathcal T$. We will explain why the quotient space $\mathcal M/\operatorname{Symp}$ is finite, and describe what the finiteness of $\mathcal T/\operatorname{Ham}$ would imply for the homotopy type of Symp .