

Pushing Boundaries: The Existence of Solution for a Free Boundary Problem Modeling the Spread of Ecosystem Engineers

Maryam Basiri Supervised by: Prof. Abbas Momeni, Prof. Frithjof Lutscher

Department of Mathematics and Statistics University of Ottawa

Motivation: Spatial Spread of Species

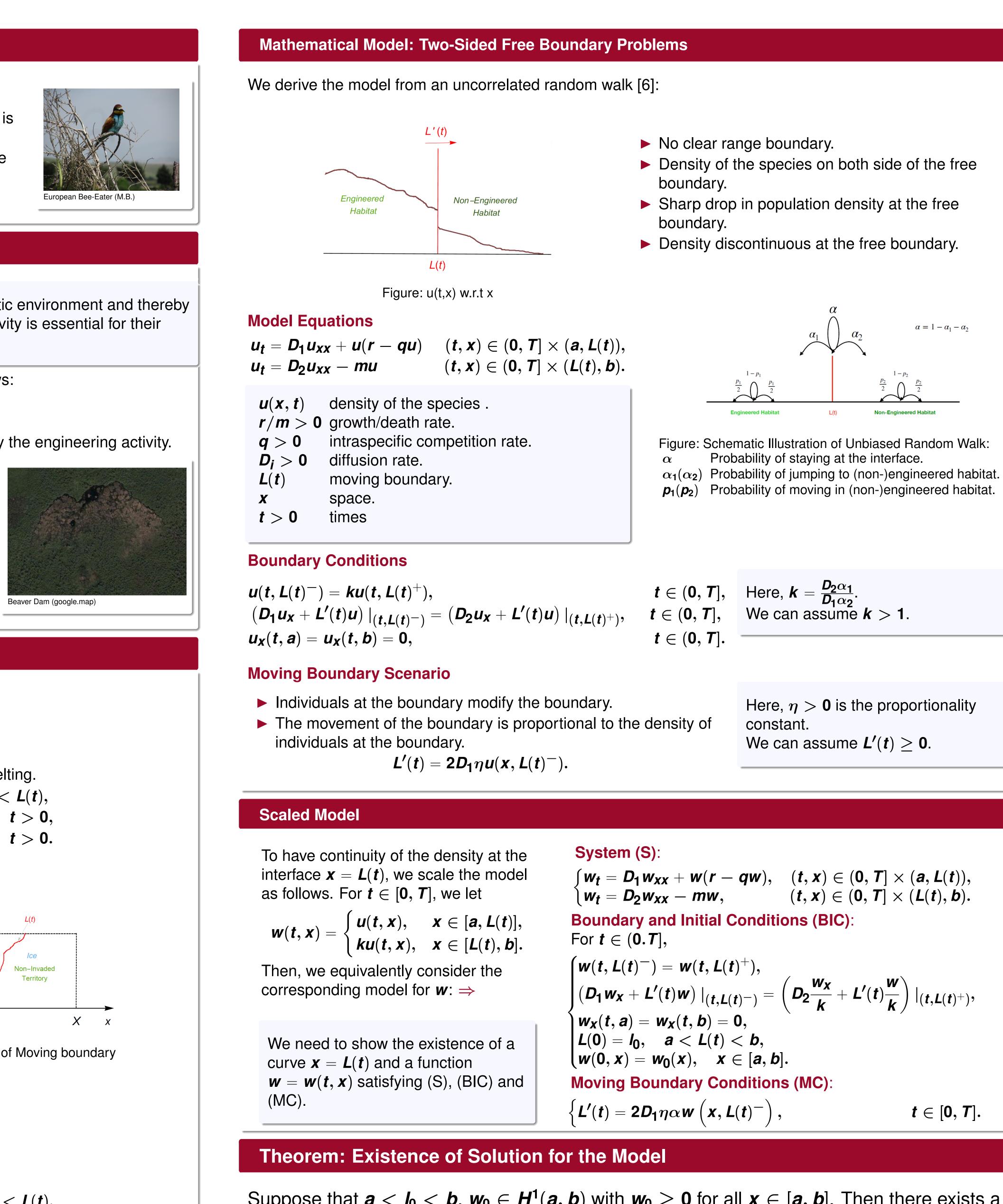
- Many mathematical models describe spatial spread of organisms.
- The existing models assume that the habitat quality is unaffected by the presence of the species!
- But: many species modify their environment to make it more suitable [5].
- ► We model this process.

Ecosystem Engineers

Ecosystem Engineers : species that can alter their abiotic environment and thereby enhance their population growth. Their engineering activity is essential for their survival [2].

We model the spread of Ecosystem Engineers as follows:

- Prior to engineering: unsuitable habitat.
- After engineering: suitable habitat.
- Boundary between the two types of habitat moved by the engineering activity.

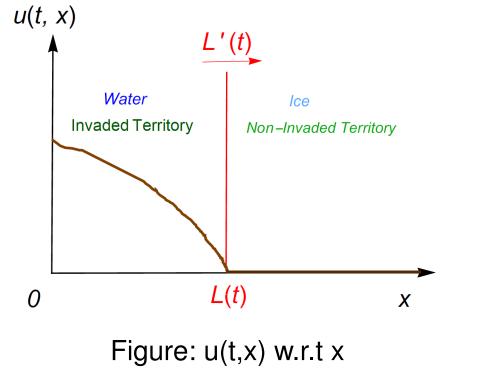


Modeling Approach: Free Boundary Problem

Stefan Problem

- Modeling melting of ice [8]:
- Behind the front: Water.
- Ahead of the front: Ice.
- ► The boundary between the two phases moves by melting.

$$\begin{cases} u_t - du_{XX} = 0, & t > 0, 0 < x < L(t) \\ u(t, L(t)) = 0 & t > 0 \\ L'(t) = -u_X(t, L(t)), & t > 0 \end{cases}$$



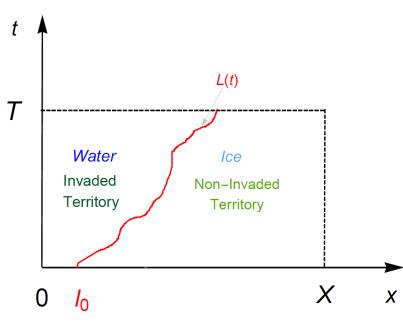


Figure: Graph of Moving boundary

Free boundary problem in Ecology

Modeling spread of invasive species [3]:

- ▶ Behind the front: The invasive species (x < L(t)).
- Ahead of the front: Non-invaded territory (x > L(t)).
- The boundary represents the spreading front (L(t)).

$$\left\{egin{array}{ll} m{u}_t - m{d}m{u}_{m{X}m{X}} = m{f}(m{u}), & t > 0, 0 < m{x} < m{L}(t), \ m{u}(t, m{L}(t)) = m{0}, & t > 0, \ m{L}'(t) = -\mu m{u}_{m{X}}(t, m{L}(t)), & t > 0. \end{array}
ight.$$

Suppose that $a < I_0 < b$, $w_0 \in H^1(a, b)$ with $w_0 \ge 0$ for all $x \in [a, b]$. Then there exists a solution (*L*, *w*) for the system of equations (S) with conditions (BIC) and (MC) over [0, *T*], provided **T** is small [1].

- Here, $\eta > 0$ is the proportionality

$$\begin{array}{l} t, \mathcal{L}(t)^{+}), \\ |_{(t,\mathcal{L}(t)^{-})} &= \left(\mathcal{D}_{2} \frac{w_{x}}{k} + \mathcal{L}'(t) \frac{w}{k} \right) |_{(t,\mathcal{L}(t)^{+})}, \\ p) &= 0, \\ \mathcal{L}(t) < b, \\ x \in [a, b]. \\ r \text{ Conditions (MC):} \\ \left(x, \mathcal{L}(t)^{-} \right), \qquad t \in [0, T]. \end{array}$$

Proof.

Part 1: Existence of Local Solution for a Given Curve

- ► We shall write our system in the form $\mathbf{w}(\mathbf{0},.)=\mathbf{w}_{\mathbf{0}}.$

Define:

- The real Hilbert space
$$m{H} = m{L}^2(m{a})$$

 $\langle m{u}, m{v}
angle = \int_{m{a}}^{m{L}(t)^-} m{u}m{v} \ m{a}$

$$arphi^t(oldsymbol{w}):=\Big\{$$

$$arphi_1(\mathit{t}, \mathit{w}) = rac{1}{2}$$

$$\varphi_2(t, W) =$$

- The nonlinear operator B(t, u),

a, **b**) with the inner product $dx + \frac{1}{k} \int_{I(t)^+}^{u} uv \, dx$, for all $u, v \in H$ and $t \in (0, T]$, and the norm $\|u\|_{H}^{2} = \|u\|_{L^{2}(a,L(t))}^{2} + \frac{1}{k}\|u\|_{L^{2}(L(t),b)}^{2}.$ - The time-dependent functional $\varphi^t : H \to \mathbb{R} \cup \{\infty\}$ $igg(arphi_1(oldsymbol{t},oldsymbol{w})+arphi_2(oldsymbol{t},oldsymbol{w}) \hspace{1cm} ext{if} oldsymbol{w}\in oldsymbol{H}^1(oldsymbol{a},oldsymbol{b}),$ if $\boldsymbol{w} \notin \boldsymbol{H}^{1}(\boldsymbol{a}, \boldsymbol{b})$, where $\frac{1}{2}\int_{a}^{L(t)} D_{1}w_{x}^{2} + w^{2} dx + \frac{1}{2k}\int_{L(t)}^{b} D_{2}w_{x}^{2} + w^{2} dx,$ and $arphi_2(t,w) = rac{k}{k-1} rac{L'(t)}{2} \Big(rac{1}{k} w(t,L(t)^+) - w(t,L(t)^-)\Big)^2.$ $F(x) := \left\{ egin{array}{ll} - oldsymbol{F_1}(oldsymbol{w}^+) & ext{if} & oldsymbol{x} \in (oldsymbol{a}, oldsymbol{L}(oldsymbol{t})), \ - oldsymbol{F_2}(oldsymbol{w}^+) & ext{if} & oldsymbol{x} \in (oldsymbol{L}(oldsymbol{t}), oldsymbol{b}), \end{array}
ight.$ with $F_1(w) = w(r - qw) + w$ and $F_2(w) = -mw + w$.

- cond ition (**BIC**) for a given curve **L**.

Part 2: Existence of Local Solution for the Free boundary

appropriate mapping [4].

For **T** small enough, let \mathcal{B} be a closed ball in $L^2(0, T)$, with radius **R**. For any $r \in \mathcal{B}$ with $r(t) \ge 0$ on [0, T], define:

$$\mathcal{H}(r)(t) = 2r$$

ere $L(t) = I_0 + \int_0^t r(au) d au$

 $2\eta D \alpha w(t, L(t)^{-})$ for a.e. $t \in [0, T]$, and **w** is the solution of the system (S) and whe conditions (BIC) corresponding to L(t).

(S) with conditions (BIC) and (MC).

References

- [1] Basiri et al. (2020), sub to J. No.
- [2] Cuddington et al. (2009), Am.
- [3] Du et al. (2010), *J. Differ. Equ.*
- [4] Evans (1975), Indiana Univ. M

We consider T > 0 and assume a given curve L satisfies: $L(\mathbf{0}) = I_{\mathbf{0}}, \quad L(t) \in (\mathbf{a} + \delta, \mathbf{b} - \delta), \quad L'(t) \ge \mathbf{0}, \text{ for } t \in [\mathbf{0}, T], \text{ and } \delta > \mathbf{0}.$ $\int \mathbf{w}_{t}(t,.) + \partial arphi^{t}(\mathbf{w}(t,.)) + \mathrm{B}(t,\mathbf{w}(t,.)) = \mathbf{0}, \ \mathbf{0} < t < T,$

 \blacktriangleright We apply [7] to prove the existence of a solution w to the evolution equation, under appropriate assumptions on $\varphi^{t} : H \to [0, \infty]$ and $B : H \to H$.

► We show this solution corresponds to the solution **w** of the system (**S**) with

► We first write the equation $L'(t) = 2D\eta \alpha w (x, L(t)^{-})$ as a fixed point for an

 \blacktriangleright We show that the operator $\mathcal{H}: \mathcal{B}^+ \to \mathcal{B}^+$ is continuous and compact. \blacktriangleright by Schauder's fixed point theorem, the operator \mathcal{H} has a fixed point \mathbf{r} .

Thus: the curve $L(t) = I_0 + \int_0^t r(\tau) d\tau$ and the function w(x, t) are the solution to

Nonlinear Sci.	■ [5] Jones (1994), Oikos.	
Nat.	[6] Lutscher et al. (2020), Math. Biol.	
	[7] Otani (1982), J. Differ. Equ.	
lath.	[8] Stefan (1889), Wien Adak. Mat. Natur.	