SS13 - Analyse statistique des données fonctionnelles / SS13 - Statistical Analysis of Functional Data
Org: J. Ramsay (McGill) et/and H. Cardot (INRA Castanet-Tolosan)


C. ABRAHAM, Agro Montpellier, 2 place P. Viala, 34060 Montpellier Cedex 1
Classification of curves: the choice of the metric

We emphasize the importance of the choice of the metric in curves classification with a theoretical example. It is shown that the consistency of the moving window rule can depend strongly on the metric. Sufficient conditions on the metric are given to ensure consistency for this rule.

In the second part of the talk, we provide a Bayesian rule for which the metric is automatically fitted by the data. This rule is derived from the predictive classification method. The curves are modeled by Gaussian processes.

A. BOUDOU, Université Paul Sabatier, Toulouse
ACP du transformé multiplicatif d'un processus stationnaire

Étant donnés deux processus stationnaires indépendants Xn et Yn , avec n entier relatif, respectivement multi et unidimensionnel, il est facile de constater que le processus transformé multiplicatif simple Tn = Yn Xn (resp.tensoriel Un = Yn ÄXn ) est aussi stationnaire.

On peut ainsi modéliser une transformation multiplicative simple ou tensorielle de la série p-dimensionnelle Xn par le facteur Yn . Par exemple, dans le cas simple, ce facteur peut être un changement d'unité de mesure entre Xn et Tn, une perturbation de Xn ou encore une inconnue dans l'équation Tn = Yn Xn .

Nous nous proposons d'étudier ici les rapports pouvant exister entre les ACP dans le domaine des fréquences de Xn et de Tn.

Nous commençons par exprimer la mesure aléatoire associée au processus Tn en fonction des mesures aléatoires respectivement associées à Xn et à Yn  : à une isométrie près, il s'agit du produit de convolution de deux mesures aléatoires tel qu'il a été défini récemment par les auteurs.

Ensuite, nous obtenons le résultat stipulant que la mesure (resp.la densité) spectrale du transformé Tn est le produit de convolution des mesures (resp. des densités) spectrales respectives de Xn et Yn .

Ainsi, alors que les ACP classiques de Xn et Tn sont quasi-identiques, les résultats précédents montrent que les ACP dans le domaines des fréquences de Xn et Tn sont totalement différentes et leur lien est explicité par les formules de convolution.

Enfin, on peut montrer que ces propriétés peuvent être étendues, d'une part à l'étude de Xn et Un et, d'autre part, au cas où l'ensemble indiciel est un groupe abélien localement compact.

Travail en collaboration avec Yves Romain, Univ. P. Sabatier, Toulouse.

SOPHIE DABO-NIANG, Laboratoire de statistique du CREST, timbre J340, 3 avenue Pierre Larousse, 92245 Malakoff Cedex, France
Kernel regression estimation in Banach space: application to genetic data

We study a nonparametric regression kernel estimate when the response variable is in a Banach space and the explanatory variable takes values in a semi-metric space. The present framework includes the classical finite dimensional case, but also spaces of infinite dimensions, particularly functional spaces. This problem was widely studied, when the variables take values in finite dimensional spaces, and there are many references on this topic, contrary to the infinite dimensional observation case.

Many phenomena, in various areas (e.g. weather, medicine, ...), are continuous in time and may or must be represented by curves. Recently, the statistics of the functional data have met a growing interest.

We establish some asymptotic results and give upper bounds of the p-mean and (pointwise and integrated) almost sure estimation errors, under general conditions. As an example, we study the case when the explanatory variable is the Wiener process. We end by an application to genetic data.

FREDERIC FERRATY, Université Toulouse Le Mirail, Département Math. & Info., 5 allée Machado, 31058 Toulouse Cedex 1
Nonparametric Methods for Functional Data: Regression, Discrimination and Classification

Functional aspects have become more and more popular in modern statistics, so much so that the designation of Functional Statistics or Functional Data emerged recently. Typically, Functional Data occur as soon as we observe one curve per subject (or unit). In the practice, many objects can be viewed as functional data (spectrometric curves, vocals registration, time series, spatio-temporal processes, ...).

We propose here to present some recent nonparametric statistical methods taking into account the functional features of such data. The starting point is the development of a nonparametric regression method when we consider a scalar response and a functional explanatory variable. Replacing the scalar response with a categorical variable, we derive a curve discrimination method.

On the other hand, recent advances allow us to achieve density estimation of a functional random variable. One of the main interest of such a method is the possibility to define and estimate modal curves, median curves, ... . These notions have been used to build an unsupervised classification method for functional data.

Finally, practical datasets concerning food industry, vocal recognization or satellite wave altimeter forms will illustrate our purpose.

ALDO GOIA, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
A Functional Nonparametric Regression Model for Time Series Prediction

The purpose is to illustrate a nonparametric model for time series prediction: the originality of this model consists in using a continuous set of past values as a predictor. This time series problem is presented in the general framework of regression estimation from dependent samples with regressor valued in some in finite dimensional semi-normed vectorial space. Under suitable a-mixing conditions, we give asymptotics for a kernel type nonparametric predictor, linking the rates of convergence with the fractal dimension of the functional process.

A. MAS, Université Montpellier, 2 place Eugène Bataillon, 34095 Montpellier Cedex 5
Confidence sets and prediction in the ARH(1) model

The Hilbertian autoregressive model (ARH(1) for short) generalizes the classical AR(1) model to functional data. We focus on a class of predictors. This class is determined by the pseudo inversion method used to estimate the autocorrelation operator. We are led to solving a problem both connected with selection of dimension and ill-posedness. We finally prove a CLT for the statistical predictor with a non standard normalization.

CRISTIAN PREDA, Faculté de Médecine, Université de Lille 2, France
Regression models for functional data by reproducing kernel Hilbert space methods

Non-linear regression models based on RKHS approach are presented in the context of functional data. The results of an application on medical data are compared with those given by the linear models.

JIM RAMSAY, McGill