LIVIU MARE, University of Regina, Regina, SK, S4S 0A2, Canada *Equivariant cohomology of flag manifolds*

The complex flag manifold $\operatorname{Fl}_n(\mathbb{C})$ is the space of all nested sequences

$$V_1 \subset \cdots \subset V_n$$
,

where each V_k is a vector subspace of \mathbb{C}^n , dim $V_k = k$. The group T of all diagonal unitary $n \times n$ matrices acts canonically on this space. The corresponding equivariant cohomology ring $H_T^*(\operatorname{Fl}_n(\mathbb{C}))$ admits two presentations: of Borel type (in terms of generators and relations) and of Goresky–Kottwitz–MacPherson type (in terms of restrictions to the fixed points of the action). In this talk I will present similar descriptions of the equivariant cohomology rings of the quaternionic and the octonionic flag manifolds relative to some appropriate group actions. The equivariant (topological, complex) K-theory of these spaces will also be discussed briefly.