ROBERT MASSON, UBC, 1984 Mathematics Road, Vancouver, BC, V6T 1Z2 Second moment estimates for the growth exponent of planar loop-erased random walk

The loop-erased random walk \widehat{S}^n is the process obtained by running a random walk in Z^d from the origin to the first exit time of the ball of radius n and then chronologically erasing its loops. If we let M_n denote the number of steps of \widehat{S}^n then the growth exponent α is defined to be such that $E[M_n]$ grows like n^{α} . The value of α depends on the dimension d. In this talk we'll focus on d = 2 where it's been shown that $\alpha = 5/4$. We will establish a second moment result and use it to get estimates for the probability that M_n is close to its mean. Namely, we show that there exists 0 such that for all <math>n and λ large, $P(M_n < \lambda^{-1}E[M_n]) < p^{\lambda^{1/6}}$.

This is joint work with Martin Barlow.