BEGOÑIA FERNÁNDEZ, Universidad Nacional Autónoma de México

Estimates for the Probability Itô Processes Remain Around a Curve, and Applications to Finance

We consider a Brownian Motion $W = (W^i)_{i \in N}$ and an adapted process of dimension n $(X_t)_{t \ge 0}$. We define $\tau_R = \inf\{t : |X_t - x_t| \ge R_t\}$, where x_t , $t \ge 0$ is a deterministic differentiable curve in R^n and $R_t > 0$, $t \ge 0$ a ratio that depends on time. Assume that until τ_R the process X is a solution of the equation

$$X_{t\wedge\tau_R} = x + \sum_{j=1}^{\infty} \int_0^{t\wedge\tau_R} \sigma_j(s,\omega,X_s) \, dW_s^j + \int_0^{t\wedge\tau_R} b(s,\omega,X_s) \, ds,$$

where the coefficients σ_j and b are adapted, locally bounded and $(t, x) \rightarrow \sigma_j(t, \omega, x)$ are Lipschitz continuous and satisfy

$$\gamma_t \ge \sigma \sigma^*(t \wedge \tau_R, \omega, X_{t \wedge \tau_R}) \ge \lambda_t$$

We obtain lower bounds of the form:

$$\exp\left[-Q_n^1\left(1+\int_0^{T+r}F_x^1(t)\,dt\right)\right] \le P(\tau_R > T) \tag{1}$$

where Q_n^1 is a constant and F_x^1 is a function that depends on x_t and R_t . We apply the results to obtain lower bounds for option prices for stochastic volatility models. Joint work with V. Bally and A. Meda.