AMIR MORADIFAM, University of British Columbia

Bessel pairs and optimal Hardy and Hardy-Rellich inequalities
We give necessary and sufficient conditions on a pair of positive radial functions V and W on a ball B of radius R in R^{n}, $n \geq 1$, so that the following inequalities hold for all $u \in C_{0}^{\infty}(B)$:

$$
\int_{B} V(x)|\nabla u|^{2} d x \geq \int_{B} W(x) u^{2} d x
$$

and

$$
\int_{B} V(x)|\Delta u|^{2} d x \geq \int_{B} W(x)|\nabla u|^{2} d x+(n-1) \int_{B}\left(\frac{V(x)}{|x|^{2}}-\frac{V_{r}(|x|)}{|x|}\right)|\nabla u|^{2} d x .
$$

This characterization makes a very useful connection between Hardy-type inequalities and the oscillatory behaviour of certain ordinary differential equations, and helps in the identification of a large number of such couples (V, W)-that we call Bessel pairs-as well as the best constants in the corresponding inequalities. This allows us to improve, extend, and unify many results-old and new-about Hardy and Hardy-Rellich type inequalities, such as those obtained by Caffarelli-KohnNirenberg, Brezis-Vázquez, Wang-Willem, Adimurthi-Chaudhuri-Ramaswamy, Filippas-Tertikas, Adimurthi-Grossi-Santra, Tertikas-Zographopoulos, and Blanchet-Bonforte-Dolbeault-Grillo-Vasquez. As an application we give a mathematical proof for the singularity of the extremal solution of the bilaplacian with exponential nonlinearity in dimensions $N \geq 13$.

