LUIS VERDE-STAR, Universidad Autonoma Metropolitana, Mexico City Computation of Hermite-Pade interpolants by iterated polynomial interpolation

Let I be an open interval and $f: I \rightarrow \mathbb{R}$ a sufficiently differentiable function such that $f(x) \neq 0$ for $x \in I$. Suppose that $u_{0}, u_{1}, u_{2}, \ldots$ is a sequence of monic polynomials such that for $k \geq 0$ we have that u_{k} divides u_{k+1} and has all its roots in I. If g is a sufficiently differentiable function defined on I, we denote by $H\left(g, u_{k}\right)$ the polynomial of smallest degree that interpolates g at the multiset of roots of u_{k} in the sense of Hermite.
We construct a sequence of polynomials $p_{0}, p_{1}, p_{2}, \ldots$ defined as follows:

$$
\begin{aligned}
& p_{0}=H\left(f, u_{0}\right), \quad p_{1}=H\left(p_{0} / f, u_{1}\right), \\
& \text { for } k \text { even } \quad p_{k}=H\left(f p_{k-1}, u_{k}\right), \text { and } \\
& \quad \text { for } k \text { odd } \quad p_{k}=H\left(p_{k-1} / f, u_{k}\right)
\end{aligned}
$$

We show that for each even integer k the rational function p_{k} / p_{k+1} is a Hermite-Padé interpolant for f at the multiset of roots of u_{k}. We present some examples and numerical results. We also consider some particular choices for the sequence u_{k} and indicate some possible modifications of our construction.

