LUIS VERDE-STAR, Universidad Autonoma Metropolitana, Mexico City Computation of Hermite–Pade interpolants by iterated polynomial interpolation

Let I be an open interval and $f: I \to \mathbb{R}$ a sufficiently differentiable function such that $f(x) \neq 0$ for $x \in I$. Suppose that u_0, u_1, u_2, \ldots is a sequence of monic polynomials such that for $k \ge 0$ we have that u_k divides u_{k+1} and has all its roots in I. If g is a sufficiently differentiable function defined on I, we denote by $H(g, u_k)$ the polynomial of smallest degree that interpolates g at the multiset of roots of u_k in the sense of Hermite.

We construct a sequence of polynomials p_0, p_1, p_2, \ldots defined as follows:

$$\begin{array}{ll} p_0 = H(f, u_0), & p_1 = H(p_0/f, u_1), \\ \text{for } k \text{ even } & p_k = H(f \, p_{k-1}, u_k), \text{ and} \\ \text{for } k \text{ odd } & p_k = H(p_{k-1}/f, u_k). \end{array}$$

We show that for each even integer k the rational function p_k/p_{k+1} is a Hermite–Padé interpolant for f at the multiset of roots of u_k . We present some examples and numerical results. We also consider some particular choices for the sequence u_k and indicate some possible modifications of our construction.