JOAQUIN DELGADO, Departamento de Matemáticas, UAM-Iztapalapa

The Bogdanov-Takens bifurcation in a class of traffic flow models

Macroscopic traffic models are based in the analogy with a continuous 1-dimensional flow. Conservation of number of cars leads to conservation of mass and the Navier–Stokes equation

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho V}{\partial x} = 0 \tag{1}$$

$$\rho\left(\frac{\partial V}{\partial t} + V\frac{\partial V}{\partial x}\right) = \frac{\partial}{\partial x}\left(\eta\frac{\partial V}{\partial x}\right) - \frac{\partial p}{\partial x} + X \tag{2}$$

where $\rho(t, x)$ is density, V(t, x) the average velocity of cars, η the "viscosity" and p the local pressure, being proportional to the variance ("temperature") of the traffic $\Theta(x, t)$ and to the gradient velocity; in the simplest case $p = \theta_0 \rho - \eta_0 \frac{\partial V}{\partial x}$ with constants Θ_0 , η_0 . The "external forces" in the Kerner–Konhauser are represented by driver's tendency to acquire a safe velocity $V_e(\rho)$ with a relaxation time τ , $X = \rho \frac{V_e(\rho) - V}{\tau}$, where $V_e(\rho)$ is the empirical "fundamental relationship" usually a monotone decreasing function bounded from below.

By performing the change of variables $z = x + v_g t$, solutions of (1) in the form of travelling waves are reduced to: $\rho(v+v_g) = q_g$ with parameters v_g , q_g , and solutions of (??) are reduced to a dynamical system, written in adimensional variables as

$$\frac{dv}{dz} = y$$

$$\frac{dy}{dz} = \lambda q_g \left[1 - \frac{\theta_0}{(v+v_g)^2} \right] y - \mu q_g \left(\frac{v_e(v) - v}{v+v_g} \right).$$
(3)

Here $v_e(v)$ is de adimensional version of $V_e(\rho)$.

We prove that there exist a curve in the parameter space $v_g - q_g - \Theta_0$ such that system (3) undergoes a Bagdanov–Takens bifurcation. In particular we prove the existence of Hopf and homoclinic bifurcations.

This is a joint work with Patricia Saavedra and Rosa María Velasco (UAM–I).