ISIDORO GITLER, Cinvestav

Toric Ideals Complete Intersection of Oriented Graphs and Generalized-Theta Graphs

Let G be a connected graph with n vertices and q edges and let \mathcal{O} be an orientation of the edges of G, i.e., an assignment of a direction to each edge of G. Thus $\mathcal{D}=(G, \mathcal{O})$ is an oriented graph. To each oriented edge $e=\left(x_{i}, x_{j}\right)$ of \mathcal{D}, we associate the vector v_{e} defined as follows: the i-th entry is -1 , the j-th entry is 1 , and the remaining entries are zero. The incidence matrix $A_{\mathcal{D}}$ of \mathcal{D} is the $n \times q$ matrix with entries in $\{0, \pm 1\}$ whose columns are the vectors of the form v_{e}, with e an edge of \mathcal{D}. For simplicity of notation we set $A=A_{\mathcal{D}}$. The set of column vectors of A will be denoted by $\mathcal{A}=\left\{v_{1}, \ldots, v_{q}\right\}$.
Consider the edge subring $k[\mathcal{D}]:=k\left[x^{v_{1}}, \ldots, x^{v_{q}}\right] \subset k\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ of the oriented graph \mathcal{D}. There is an epimorphism of k-algebras

$$
\varphi: B=k\left[t_{1}, \ldots, t_{q}\right] \longrightarrow k[\mathcal{D}], \quad t_{i} \longmapsto x^{v_{i}}
$$

where B is a polynomial ring. The kernel of φ, denoted by $P_{\mathcal{D}}$, is called the toric ideal of \mathcal{D}. This ideal was studied in [2], [3]. Notice that $P_{\mathcal{D}}$ is no longer a graded ideal, see Proposition ??. The toric ideal $P_{\mathcal{D}}$ is a prime ideal of height $q-n+1$ generated by binomials and $k[\mathcal{D}]$ is a normal domain. Thus any minimal generating set of $P_{\mathcal{D}}$ must have at least $q-n+1$ elements, by the principal ideal theorem. If $P_{\mathcal{D}}$ can be generated by $q-n+1$ polynomials it is called a complete intersection. In [3] is shown that any graph has an acyclic orientation such that the corresponding toric ideal is a complete intersection. And a graph G is called complete intersection for all orientation (C.I.O.) if P_{D} is a complete intersection, for all D orientation of G.
We introduce the generalized-theta graph. The theta graphs studied in [1] are generalized-theta graphs. Our main result is: G is C.I.O. if and only if all generalized thetas of G have a special triangle. We obtain a characterization of the ring graphs in term of the generalized theta graph. With this result we recover the characterization of the C.I.O. bipartite graphs given in [3].

References

[1] M. Chudnovsy and S. Safra, Detecting a theta or a prism. SIAM J. Discrete Math. 22(2008), 1164-1186.
[2] I. Gitler, E. Reyes and R. H. Villarreal, Ring graphs and toric ideals. Electron. Notes Discrete Math. 28C(2007), 393-400.
[3] ___ Ring graphs and complete intersection toric ideals. Discrete Math., to appear.

