MÓNICA CLAPP, Universidad Nacional Autónoma de México, Instituto de Matemáticas, Circuito Exterior C.U., 04510 México D.F., Mexico

Periodic and Bloch solutions to a magnetic nonlinear Schrödinger equation

We consider the equation

$$(\wp_A) \quad (-i\nabla + A)^2 u + V u = |u|^{p-2} u,$$

where $A \in C^{1,\alpha}(\mathbb{R}^N, \mathbb{R}^N)$ is the magnetic potential associated to a magnetic field $B = \operatorname{curl}(A)$ and $V \in C^{0,\alpha}(\mathbb{R}^N)$ is an electric potential. We assume that A and V are 2π -periodic in each variable, V > 0, and $p \in (2, 2^*)$ with $2^* := \infty$ if N = 2, $2^* := \frac{2N}{N-2}$ if $N \ge 3$. We shall address two questions: the gauge-dependence problem for 2π -periodic solutions $u : \mathbb{R}^N \to \mathbb{C}$, and the multiplicity of Bloch solutions. Unlike the nonperiodic case where problem (\wp_A) is basically independent of A (it is gauge invariant), in the periodic case this is far from being true. Under some assumptions on A we show that, if there exists a one-to-one correspondence between the 2π -periodic solutions of (\wp_A) and those of (\wp_{A+z}) preserving their absolute value, then z lies in a subset of measure zero of \mathbb{R}^N . We use this fact to show the existence of an uncountable set of Bloch solutions with real quasimomentum having small energy.

This is joint work with Renato Iturriaga and Andrzej Szulkin.