LINO RESÉNDIZ, Universidad Autonoma Metropolitana–Azcapotzalco, Av. San Pablo 180, Mexico D.F. Q_p *n*-dimensional classes

Let $n \ge 3$ and B be the unit ball in \mathbb{R}^n . Denote by $GM(B) = \{\phi_{a^*}\}$ the group of all Möbius transformations of the unit ball onto itself and SH the class of subharmonic functions $u: B \to \mathbb{R}$. Consider

$$g(x, a^*) = |\phi_{a^*}(x)|^{2-n} - 1 = \frac{1}{|\phi_{a^*}(x)|^{n-2}} - 1,$$

the modified solution of the Laplacian in \mathbb{R}^n compose with a Möbius transformation ϕ_{a^*} of the unit ball onto itself. Let $0 \le p < \infty$. We say that the function u belongs to the subharmonic class $\mathcal{Q}_{p,g}^{sh}$ if $u \in S\mathcal{H}$ and

$$\sup_{|a^*|<1} \int_B u^2(x) \left(\frac{1}{|\phi_{a^*}(x)|^{n-2}} - 1\right)^p dB_x < \infty.$$

In this talk we present several properties of this class and associated subclasses, like Dirichlet and Bloch classes. Classical Q_p -analytic spaces in \mathbb{C} were introduced by Aulaskari and Lappan. In higher dimensions, Q_p -monogenic spaces were studied using Quaternionic and Clifford analysis. Since the subharmonic class is a very wide class, the results presented here are quite more general.