CARLOS VILLEGAS, UNAM, Matemáticas, Cuernavaca

Asymtotics of clusters of eigenvalues for perturbations of the hydrogen atom Hamiltonian

We present in this talk a limiting eigenvalue distribution theorem for the Schrödinger operator of the hydrogen atom (with the Planck parameter \hbar included) plus ϵ times a bounded continuous function Q. By considering suitable dilation operators, we prove that taking $\epsilon = O(\hbar^2)$ we obtain well defined clusters of eigenvalues around the energy E = -1/2 whose limiting distribution involves the Radon transform of the function Q along the classical orbits of the Kepler problem with energy E = -1/2 with respect to an integration over the space of geodesics of the 3-sphere S^3 . The idea of the proof involves a well known unitary transformation from the Hilbert space generated by the bound states of the hydrogen atom onto $L^2(S^3)$ and coherent states on the sphere S^3 . We will comment on the generalization of the theorem above to the *n*-dimensional case and when Q is a pseudodifferential operator of order zero.