LUIS GODDYN, Simon Fraser University
 Spanning Trees of Many Different Weights

We weight the edges of a graph X with elements of an abelian group G. The weight $w(T)$ of a spanning tree T is the sum of the weights of its edges. In 1990, Seymour and Schrijver conjectured the lower bound

$$
\#\{w(T): T \text { is a spanning tree of } X\} \geq|H|\left(1-r k(X)+\sum r k\left(E_{Q}\right)\right) .
$$

Here H is the stabilizer of the set on the left. The sum runs over the H-cosets Q in G. Also $r k$ is the (matroidal) rank function, and E_{Q} is the set of edges of X whose weight lies in Q.
In fact, they propose an analagous conjecture for any weighted matroid, and they prove it in the case G has prime order. Here we prove the Seymour-Schrijver Conjecture in case G has order $p q$, where p and q are prime, and also in case G is the cyclic group of order p^{k}.
This is joint work with Matt Devos and Bojan Mohar.

