CARLOS VALENCIA, CINVESTAV, Departamento de Matemáticas, Apartado Postal 14-740, 07000 México City, DF; UNAM, Instituto de Matemáticas, Circuito Exterior, Ciudad Universitaria, México City, DF, 04510
Connected graphs with a minimal number of edges
In this talk we will give a lower bound for the number of edges of a connected graph as a function of the stability number α and the covering number τ. More precisely we will show that

$$
q(G) \geq \alpha(G)-c(G)+\Gamma(\alpha(G), \tau(G))
$$

where $c(G)$ is the number of connected components of G and

$$
\Gamma(a, t)=\min \left\{\left.\sum_{i=1}^{a}\binom{z_{i}}{2} \right\rvert\, z_{1}+\cdots+z_{a}=a+t \text { and } z_{i} \geq 0 \forall i=1, \ldots, a\right\}
$$

for a and t two arbitrary natural numbers.
This result is a variant for connected graphs from a Turán's theorem for the minimal number of edges of a graph with fixed stability number and order. We will also discuss the generalization of this result for k-connected graphs with $k \geq 2$.

