FERNANDO GALAZ, CIMAT, UAM-Iztapalapa

Iterating the Cesaro operator
Given a complex sequence $s=\left\{a_{n}\right\}$, the discrete Cesaro operator T assigns to it the sequence $T s=\left\{b_{n}\right\}$, where $b_{n}=$ $\frac{a_{0}+\cdots+a_{n}}{n+1}, n=0,1, \ldots$. If s is a convergent sequence, we prove that $\left\{T^{n} s\right\}$ converges if, and only if, $a_{1}=\lim _{n \rightarrow \infty} a_{n}$. We also establish a corresponding result for the continuous Cesaro operator defined on $C[0,1]$.

