IVAN GUTMAN, University of Kragujevac, Faculty of Science, POB 60, 34000 Kragujevac, Serbia
Energy of a Graph
Let $G$ be a graph on $n$ vertices. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be its eigenvalues (i.e., the eigenvalues of the adjacency matrix of $G$ ). The energy of $G$ is defined as [1]

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

The name "energy" was chosen because in certain (limited) cases $E(G)$ is related to the energy of certain molecules. Some fundamental and some newest results on $E(G)$ [2] will be presented, and some open problems indicated.
The quantity

$$
E E(G)=\sum_{i=1}^{n} e^{\lambda_{i}}
$$

was recently proposed as a measure of "centrality" of complex networks [3]. Some properties of $E E(G)$ will also be discussed, in particular its relation to $E(G)$.

## References

[1] I. Gutman, The energy of a graph. Ber. Math.-Statist. Sekt. Forsch. Graz 103(1978), 1-22.
[2] The energy of a graph: Old and new results. Algebraic Combinatorics and Applications, Springer, Berlin, 2001, 196-211; Spectra and energies of iterated line graphs of regular graphs. Appl. Math. Lett. 18(2005), 679-682; Laplacian energy of a graph. Lin. Algebra Appl. 414(2006), 29-37; Note on the Coulson integral formula. J. Math. Chem. 39(2006), 259-266.
[3] E. Estrada and J. A. Rodríguez-Velázquez, Subgraph centrality in complex networks. Phys. Rev. E71(2005), 056103.

