FRANCISCO GONZALEZ ACUÑA, Instituto de Matemáticas, UNAM \& CIMAT
Minimal coverings of a 3-manifold with special open subsets
What is the minimal number of "special" open subsets U of a closed 3-manifold M^{3} that cover it? We will discuss this question with the following nine meanings of the word "special":

$$
\text { absolute }\left\{\begin{array}{l}
\text { 1. Homeomorphic to } \mathbb{R}^{3} \\
2 . \text { Homeomorphic to } S^{1} \times \mathbb{R}^{2} \\
\text { 3. Homeomorphic to an open subset of } \mathbb{R}^{3} \\
\text { 4. Contractible (in themselves) }
\end{array}\right.
$$

relative $\left\{\begin{array}{l}\text { 5. Contractible in } M^{3} \\ \text { 6. } \pi_{1} \text {-contractible in } M^{3} \\ \text { 7. } H_{1} \text {-contractible in } M^{3} \\ \text { 8. } H \text {-contractible in } M^{3} \\ \text { 9. } S^{1} \text {-contractible in } M^{3} .\end{array}\right.$

