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This working group was set up at the beginning of 2008 from the following
project proposals which had been submitted for the Forum:

= High School Mathematical Modeling Contest (J. Bélair)

= Intégration de la démarche de modélisation-simulation et de I’environnement dans
I’enseignement des mathématiques (P. Etchecopar and J.P. Villeneuve)

= A Canadian web portal promoting applications of mathematics in engineering, biology
and the social science (M. Laforest)

= Les approches interdisciplinaires en

(H. Squalli)

These projects all shared a common vision: the development of mathematical
modelling (and not simply the teaching of models) should be considered one of the goals
of mathematics education, and support should be provided to teachers to assist them in
contributing to that goal.

At the forum in Vancouver, the group spent the first day in Vancouver sharing
and discussing different activities aimed at enriching the modelling component of the
mathematics curriculum, from secondary to university.

In the first session of the second day, the group met with the Significant Statistics
group. As it became clear that the two groups had several common goals for which they
could join forces, they pursued the next session together.

mathématiques, science et technologie

“ Members of the “Significant Statistics” working group.



Looking at modelling activities

In looking at the modelling activities, the value of developing skills in modelling
as one of the goals of mathematics education was reaffirmed, both for its social relevance
and potential contribution to students’ motivation and mathematical thinking: it helps
students gain awareness that mathematics is a precious tool for understanding the world
in which they live.

The proposed modelling activities, which can be found in the appendix to this
report, had been characterized with respect to

1. the mathematics that can be used to model the situation
2. the phases of the modelling cycle that warrant greater attention
3. the modelling skills that they can help develop.

This was done using the following diagram, which was built from the description
of the modelling cycle provided in the discussion document for ICMI Study 14 on
Applications and Modelling in Mathematics Education (Blum et al., 2002). Each of the
phases of the cycle was associated with the types of skills it mainly requires or could help
develop. For this, we used the following classification of competencies proposed by De
Terssac (1996):

= communication skills (CO) : to translate, represent, interpret what the context
is, what is to be done and what has been done.

= intervention skills (IN) : to act upon a situation by using available knowledge
and by transforming encountered situations into reusable knowledge;

= evaluation skills (EV) : to identify, choose and justify whatever is being or has

been engaged into action.
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The question was raised as to whether or not we use communication skills in the
phase where we “do the mathematics”. Strictly speaking, mathematics is always “done”




using some form of language (including software commands and programming languages
for complex problems). Yet, when introducing modelling in school mathematics, it is in
getting an understanding of the situation and the goal pursued, and in sharing the results
and their interpretation, that communication skills play an unprecedented role. In
authentic professional modelling activities, these phases of communication are typically
done in interaction with a client or an expert in the situation to be modelled.

Tackling complexity

The presentation and discussion of the various modelling situations raised the
question of the nature and degree of complexity of the situation proposed: At what scale
should the situation be approached? What variables should we be looking at? Is the
phenomenon sensitive to initial conditions? How authentic, precise and reliable is the
data? Should we account for natural variability? How precise should the results be? In
addressing these questions, a consensus emerged to the effect that the same situation
could be the object of modelling at different school grade levels, with an increasing
degree of sophistication in the definition of the problem and the model. For instance, the
operational duration of a landfill site could be modelled very simply by considering only
its capacity and the volume of waste it receives each year. Finer models would include,
in ascending order of sophistication: compression coefficients, ideally distinct for
different strata, composition of each stratum, gas flow, etc. Accounting for variability
can lead to probabilistic modelling, which is known to be more challenging for students
than deterministic modelling. Ill-structured situations lend themselves well to developing
autonomy in making modelling decisions.

As was suggested by the presentation of the activities, modelling can be taught by
focusing initially on small parts of the modelling cycle. Critical analysis can and should
lead to iterative improvement of the models. The process of measuring the validity of a
model is the essential activity towards which teachers should strive, but it is also the
activity which requires a mastery of the entire modelling cycle.

Technology is considered essential in tackling the complexity of real situations,
first for solving associated problems, but also, and increasingly, for gathering data and
developing models. However, letting students use technology for solving relatively
complex problems that they could not approach with the pen and paper techniques that
they have been taught, may lead to a tension between a possible gain in intervention skills
(with the expansion of the class of problems that they can now solve) and a possible loss
in evaluation skills (as the black boxes used may increase in size and number). Beyond
the necessary knowledge of the limitations of the tools or software used, this may call for
a more systematic study within the math curriculum of the alternate (rather than new...)
techniques enabled by technology.

Principles of modelling education

As participants discussed the various modelling activities and implications for
teaching, a set of principles for modelling education emerged:

= The problems should be open-ended, allowing for different strategies and
solutions.



= We should develop in the math classroom culture a tolerance to uncertainty
and strategies for learning to deal with it.

= In the same way that we have learned to value the use of multiple
representations for teaching and learning a given mathematical concept, we
should also value different types of models (equations, graphics, diagrams,
graphs, closed-form functions, differential equations, recurrence relations,
matrix representations, etc.) as multiple representations of a given situation (or
of one of its components) with possibly distinct advantages: efficiency,
generality, precision, readability, convincingness, explanatory power, etc.

= We should be careful about not reducing the assessment of modelling to
assessing knowledge and use of “the” model that has been taught for a given
type of situation.

= Acknowledging that modelling takes time, we should be looking for different
forms of assessment than traditional exams.

= Modelling typically is an interdisciplinary and collective process, which takes
advantage of different perspectives and expertise. We should look for ways to
have this reflected in some of the learning activities and assessment tasks.

= Many people argue that modelling should occur exclusively in science classes,
and not in mathematics classes; but the fact is that generally, modelling is
rarely addressed in either, beyond the teaching of predefined models. In
addition, as some of the most accessible modelling activities may fall outside
the school science curriculum, and as modelling should become part of the
way we address daily life situations, the group argues that mathematical
modelling should be learned, not exclusively but in large part, in mathematics
classes.

Using modelling to teach mathematics

Mathematical modelling can be seen both as a learning objective in its own right
and as a means to learning mathematics. Although these two objectives are not mutually
exclusive, balancing them in the teaching of mathematics is not a straightforward task
(Blum et al., 2002). The group brought some ideas to help reach an appropriate balance.

While keeping in mind that not every lesson of mathematics has to include
modelling, it was clear for the group that modelling in school mathematics should not be
reduced to curve fitting activities. Not only do such activities contribute little to students’
understanding of either the situation or the mathematics used (as technology is typically
responsible for handling regression), they often present situations where reality has been
substantially distorted to match the functions that have just been taught. The way tides
are typically presented in the high school math curriculum is an example of such
distortion.

A teacher may create the need for mathematical concepts that have yet to be
taught by proposing problems that can be partially (or less efficiently) tackled with
students’ current mathematical toolkit. Not only does such an approach contribute to the
development of modelling and problem solving, it also favours anticipation of new
mathematical concepts with an intuition of their meaning or properties, and can help
establish connections between concepts and techniques.



Modelling can also be performed within a pure mathematical context. For
instance, in addition to visualisation of classical geometry optimisation problems,
dynamic geometry environments enable observation of change and identification of loci,
properties, patterns and invariants. Furthermore, remaining within the mathematical
world may offer the possibility of using deductive reasoning to build a model or validate
a solution. Despite the fact that it bypasses the complexity of real situations, modelling
within a mathematical context may reveal an interesting intermediate approach, which
has some value on its own and can also prepare the ground for more interdisciplinary
modelling.

Resources for modelling education

Although they may not always be easy to find, or readily usable, resources for
mathematical modelling education are multiplying. The access we have gained through
internet to statistics of all sorts (including health and environmental data), documented
academic or industrial experiences, and various types of archives, makes it more feasible
to use genuine data and authentic questions, thereby enabling more meaningful
experience in the modelling projects and activities. Yet, there is still a need to provide
more direct access for teachers to these resources and to document modelling activities
which can be built upon them. Professional modellers can be key players in the process,
but classroom usability of such activities heavily depends on the involvement of
educators.

Despite a lack of tradition, collaborations between teachers of different disciplines
can reveal beneficial to both teachers and students. One approach that was proposed to
operationalize at the school level the way modelling is performed in the “real world” is to
have a teacher of another discipline act as “client” for a modelling project: not only can
such client describe the situation, some of its underlying principles, and the goal to be
achieved through modelling, he or she can also participate in validating the model and
assessing student’s performance in approaching the stated goal.

Additional teacher support avenues

Concrete measures were proposed to assist teachers in integrating a modelling
component to their teaching of mathematics. From our session with the “Significant
Statistics” working group, it became very clear that the integration of modelling in the
teaching of mathematics and the development of statistical thinking had a lot to share,
and could really build on common grounds.

As a first proposal, and possibly one of the most significant outcomes of the
meeting, the idea of having a national modelling contest for secondary school students
evolved as a possible joint initiative from the Canadian Applied and Industrial
Mathematics Society (CAIMS) and Statistical Society of Canada (SSC).

Other proposals included the development of workshops that would be
functioning in parallel for teachers and students, and, more ambitiously, the organization
of math modelling summer camps. These would all be opportunities not only to learn
about modelling but also, and more importantly, to live authentic modelling experiences.

In-class support from experts was also mentioned as a powerful way to support
teachers in their integration of modelling in the classroom.



Dissemination of a classroom modelling culture could also benefit from the
development of a bank of video examples of in-class modelling activities, where teachers
could witness the implementation by their peers of strategies for dealing with uncertainty,
and for “helping progress without killing the process”.

These various approaches could all contribute to developing and interconnecting
modelling communities of practice.
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The modelling cycle
(from Blum et al, 2003)
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A typology of competencies

« savoir-se-situer »
recognise, identify, choose, justify

Communication « savoir-dire »

/ interpret, represent, translate

« savoir-intervenir»
use, apply, transform De Terssac (1996)

Intervention

« These differents skills play an important role at specific
stages of mathematical modelling.

« Modelling projects can be used to develop and assess
competencies.

CMEF 2009 Mathematical Modelling and Science



Modelling competencies
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The modelling process
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Defining the goal and structuring

On cherche a faire un verre a café en
carton qui contiendrait 250 ml.

CMEF 2009 | Mathematical Modelling and Science 6



CO

Structuring and Data collection

Pourquoi les frettes d’une guitare sont-elles plus rapprochées
lorsqu’on se dirige vers la caisse de résonance ?

n Note | L, (cm)
L, 0 |mi 65,5
L, 1 |fa 61,9
L, 2 |fa# |584
L, 3 sol 55,1
L, 4 |sol# |52,1
5 la 49,2
. B 6 |la# 46,4
7 |si 438
f 8 do 41,4
t 9 |do# |391
\ 10 | re 36,9
11 | ré# 34,8
12 | mi 32,8
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Structuring and Simplifying

Gesnoreristl ©  \We are at the start of the 2008 U.S. presidential
elections, and one important area of debate is sure to
be the national debit.

* As high school students, you have a particular
Interest in this subject since you are the people who

will pay off or at least manage the national debt in the
future.

* The rate at which the national debt changes depends
on the difference between federal income (primarily
taxes) and federal expenditures.

Lpielarsiziel

balance complexity

at the very least

CMEF 2009 Mathematical Modelling and Science 8


http://www.comap.com/highschool/contests/himcm/flyers/HiMCM08.pdf

CO

Making sense of data

» As usual, raw numbers don't carry much
information. Those numbers must be placed in
context. For example, total national debt is less
meaningful than national debt per capita.

* |n addition, you must be careful about inflation.
Many analysts look at the ratio between national
debt and gross domestic product as a good

of the impact of the national debt.

» Others worry about the cost of servicing the
national debt. This cost is affected by both the size
of the national debt and the interest rate the
government must pay to borrow money.

http://en.wikipedia.org/wiki/National _debt by U.S. presidential terms

GUES
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co| [EV
Looking for variables and indicators

Une usine produit des balles de
caoutchouc de differents diametres et

compositions.
On cherche a trouver un indicateur

mathématique pour caractériser la qualité
de rebondissement de ces balles.

o
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Measurable purpose

What is the impact of greenhouse
gases on the Earth’s temperature?

» Simplify : Sun and Earth, both uniform
» Structure . Heat exchange problem

» Reality : Earth’s rotation & axis, elliptical
orbit, complex atmospheric chemistry

» Problem : Relate quantities [GHS] and T

CMEF 2009 Mathematical Modelling and Science 11



A real model

The effect of greenhouse gases is modeled by a thin
absorbing layer.

»Reduce dimension
»Instantaneous effects
»Preserve essential physics : energy balance

A SIMPLE MODEL OF THE GREENHOUSE EFFECT

CMEF 2009 Mathematical Modelling and Science
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Simplifying
and making assumptions

e A stretch of a suburban road lined with shopping plazas
carries heavy commuter traffic. The road has 15 traffic

signals, unevenly spaced, at the intersections with cross
streets and mall entrances.

How should we time the lights in order to maximize the
flow of commuter traffic?

e Consider first a simpler case.
— Suppose the road travels north-south
and has only three lights A, B and C.

— First consider only light A,

and suppose a 1-minute cycle JAem L 00m
e green for 30 seconds (0.25mi)  (0.13 mi)

 yellow for 5 seconds
» red for 25 seconds.

High School Mathematics at Work.
MSEB, 1998, 147-152
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Model? What model?

Voici une préediction des 2
mareées (heures et

hauteurs des pleines et
basses mers) de Bathurst
au Nouveau Brunswick,
pour le debut de mai 2009
(www.marees.gc.ca ) : 05m

2.0m

1.0m

BY |co

- 8.0 pi

ﬁ - 6.0 pi

N L Aa L

ne

RTIVRYURVLTRTATAY

|\

[ \fe

LY i VoWVl U i U f
Om 0.0 pi
01-mai-09  02-mai-09  03-mai-09  04-mai-09  05-mai-09  06-mai-09  OF-mai-09  08-mai-09
0o:00 00:00 00:00 00:00 00:00 00:00 00:00 o000

« données »
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The temptation of making reality
La calculatrice 2 affichage graphique permet de retrouver, par régression, la régle d'unz fi t th e m O d e I

fonction sinusoidale a partir d'un ensemble de couples.

Une certaine journée, on a observé le niveau de
la marée sur I'une des berges du golfe du Saint-
Laurent en fonction de I'heure de la journée. La

table de valeurs ci-contre montre quelques-uns

de ces résultats.

Hauteur (en m)

2,50
P

3.3 determine, through investigation, how sinu-
soidal functions can be used to model periodic
phenomena that do not involve angles

Sample problem: Investigate, using graphing
technology in degree mode, and explain how
the function h(t) = 5sin(30(t + 3)) approxi-
s I mately models the relationship between the
AN 7/ height and the time of day for a tide with an
- amplitude of 5 m, if high tide is at midnight.

h) Décris chacune des étapes de la démarche suivante qui permet d'établir, par régressior The Ontario Curriculum
la régle d'une fonction sinusoidale et d'en tracer le graphique. Mathematics, Grades 11-12
Ministry of Education, 2007
o L1 L2 L3 3 (2] Sinkeg (3 AL
AT
€| =3, 62700706
____________ d=6.9989808737
LEi= _
0 2:

G. Breton et al.
Réflexions mathématiques 536

BT ririexion g Les Editions CEC, 1999
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The limits of a good fit

R - pliv b W oo

: 1.2 a=.H7F5E7F 39261 a=63. 5428909
;| b2 5L873105% 231733934300 s
: 192 Rz=,9993430794 r=-,9999923037
Lzifi =55, 5 | ]

N
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Bypassing the process
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M at h e m atl S I n g Canada Hommes Femmes

Groupes d'age nombre de personnes (en milliers)
Quel |e eSt |a pI’Obablllté Population totale 32976,0 16 332,3 16 643,7
Moins de 5 ans 1740,2 890,7 849,5
pour une femme 5a9ans To2a| o272 835.2
Canadienne de 10 2 14 ans 2 060,5 1057,1 1.003,4
, 15 419 ans 2197,7 1126,2 1071,6
developper un cancer du 20 & 24 ans 2271,6 1161,8 1109,9
Sein au cours de Sa Vie ? 25 429 ans D ETAE 11485 11247
30 a 34 ans 22420 1129,6 1112,5
Groupe Nombre de nouveaux | Nombre de 35339 ans 23546 11851 11695
d’age cas au Canada déces au Canada 40 a 44 ans 2 640,1 1326,4 1313,7
selon 'age selon 'age 45 2 49 ans 27116 1.356,4 1355,2
0al9ans 5 : 50 & 54 ans 24413 1209,6 12317
20a29ans [ S 55 4 59 ans 2108,8 1040,5 1068,3
30a39ans 840 100 60 a 64 ans 1698,6 834,9 863,7
40249 ans 3 500 440 65 2 69 ans 12746 614,5 660,1
50 a59 ans 6 100 940 70 274 ans 1047,9 492,2 555,7
60a69ans 2500 1050 752479 ans 894,7 398,6 496,1
70avr9ans 3700 1100 80 2 84 ans 650,8 257,6 3932
80anset+ 2 600 1700 85 4 89 ans 369,3 1255 243,7
gtttgéi/s/\t/;lxvt\a/.scggrﬁzgi%i/nes sur le cancer 2008 90 ans et plus 186,2 499 1363

Statistique Canada - http://www40.statcan.ca/l02/cst01/demol0a_f.htm
Mathematical Modelling and Science 19
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Graphs as models

FIGURE 1: The green-yellow-red cycle of light A

G Y R G Y R
| | | I | | | | I | | |

1 1 1
90 100 110 120

Time (sec.)

FIGURE 3: Determining when lights B and € should be green for north-bound traffic

CMEF 2009

400 m
(0.25 mi)

(0.13 mi)

High School Mathematics at Work.
MSEB, 1998, 147-152
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Looking for geometric relations

7-R*H _7r-r2h
3 3

=250

A / I Il
\ ! — —
\ ! — —
\ 1 '
\ 1
\ 1 '
\ 1 '
H \ '
\ ! '
\ I 1
\ 1 '
\ 1
\ ! '
\ 1 1

7-R2H -(1—k?) = 750
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Looking for geometric relations

P=2nr

P=2nR
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Classical Problems

* Find the dimensions of a cylindrical tank to
minimize the surface

CMEF 2009

 Mathematising

S =2ar°+ 2—
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Building a
dynamic geometry model
* Le poids de L'Hospital

(Partenariat ETS/ICEGEP/SECONDAIRE 2009)

CMEF 2009 Mathematical Modelling and Science
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Building a

dynamic geometry model

I.'!': GeoGebra - PoiduHospitalggh

Fichier Edder AfMchage Options Oufils Fenébe Alde

_4 Objets libres
4 A= b, 10y
@ B = (5,66, 10)
@ Bowgpez = (1.47, 7.8)
& Co= {0081, F.48)
& D= (118, 1.6
_4 Onjels dépendanis
E= (177,213
! F={-3.55 517)
& G={1AT, 213)
H={1.17, 2.43)
D= {147, 1.13)
J= {117, 1.13)
K= {1.77, 193)
4 my=10
4 ow o= S66
& i x® iy - 10)° = 6.99
& - B6EY + (v . 10) = 108,23
= aq =1
1 2.2 - .10y = 2040
Jopu=147
@ (% - 1TATY » iy - 7.8 = 32.11
3 h =0
& |= 204
@ j=4.74
@ =1
4 k=567
2 k=06
Ey=213
D= LI
my =117
- LATY + fy - 213 = 0.09
4 pohd = 06
o - 1ATY » - 213 =1
rx=147
D Ey=1.13
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— g Déplacer ou sélectionner un ou des obletsiCil) (Raccourc=Esc)
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m
=
-]
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Looking for patterns in data

-:25’::5::‘:-

o e

CMEF 2009

CO

n | Note |L,(cm) L. -L., | L, /L L,/ L,

0O mi 65,5 1,0000
1 |fa 61,9 -3,6 0,9450 0,9450
2 |fa# |584 -3,5 0,9435 0,8916
3 | sol 55,1 -3,3 0,9435 0,8412
4 |sol# |521 -3 0,9456 0,7954
5 | la 49,2 -2,9 0,9443 0,7511
6 |la# |46,4 -2,8 0,9431 0,7084
7 s 43,8 -2,6 0,9440 0,6687
8 |do 41,4 -2,4 0,9452 0,6321
9 |do# |391 -2,3 0,9444 0,5969
10 | ré 36,9 -2,2 0,9437 0,5634
11 |re# | 34,8 -2,1 0,9431 0,5313
12 | mi 32,8 -2 0,9425 0,5008
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Using recurrence relations

Durée de vie d’'un site d’enfouissement

Vn = Levolume de déchets Modélisation de I'évolution du volume de déchets

\ n
au début de 'année n Modele 2 .
3500 000
_ . . Vn =K (Vn-l + Qn-l) 3000 000 1
Q,, = Laquantité de déchets
T . — 2 500 000 —e— Volume actuel de
acheminée a I’année n k — 0192 déchets dans le site
2 000 000 - (m3)
1 500 000 - —=— Volume modélisé de
Modélisation de I'évolution du volume de déchets déchets dans le site
1 000 000
(m3)
4000 000 500 000 -
3500 000 0 ‘ ‘ ‘ ‘
P
3 000 000 }//‘V —e— Volume actuel de 2000 2001 2002 2003 2004 2005
2 500 000 déchets dans le site
2 000 000 (m3)
/ —=—\olume modélisé de
1500 000 déchets dans le site
1 000 000 (m3)
500 000 Modélisation de I'évolution du volume de déchets
O T T T T
2000 2001 2002 2003 2004 2005 3500000

3000 000 /./'
Modele 1 . Vn - Vn-l + Qn-l 2 500 000 —+— Volume actuel de

déchets dans le site
2 000 000 (m3)

1 500 000 —=— Volume modélisé de

déchets dans le site

MOdeIe 3 1000 000 - (m3)

Vn = kl Vn-l +k, Qn-l >0 0027 |
k, =094 k,=0,85

2000 2001 20‘02 20‘03 2064 2005
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Mathematising
with Existing Models

* General case for Integral Calculus
(Environnement)

— Schéma compartimental

ﬂ\kﬂ\

— Modele mathématique existant

CMEF 2009

dx

— =k —Kkq o X
dt 21Y K12

dy
— =Ky 9X—K
at 12 21Y
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Verhulst Model

CO

« Evolution du troupeau
sans prélevement

t :reproduction

* P Chevreuils

 Mathematising

P’ = rP(l—E)
K

e Evolution du troupeau
avec prelevement

treproduction -

> F: Chevrewls >

 Mathematising
P
P'=rP|1-— |-
r( Kj ?

CMEF 2009
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Populations In competition

e Deer (P) and Bear (Q): two species that
fight for the same food

b C d

e Mathematising
a and c: Increasing Rate P"=aP -bQ
b and d: decreasing Rate Q'=cQ-dP

CMEF 2009 Mathematical Modelling and Science

CO

31




Volterra Model

* Predators and Preys (Sardine (P) and
Shark (Q)): a species that eats another
species

b d

 Mathematising P'=aP -bPQ
a and c: Increasing Rate Q'=-cQ+dPQ

b and d: Meeting Probability

CMEF 2009 Mathematical Modelling and Science 32



Epidemy propagation (SIR Model)

* Healthy population (S), Sick Population (1)
and Immune Population(R)

CO

—an 1

a1 -kl kI
2 L 2. . : N
d—S = —asl
* Mathematising dt
. dl
a: Infection Rate P aSl — bl
b: Recovery Rate dR _ )

dt

CMEF 2009 Mathematical Modelling and Science
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Lake Pollution

CO

e A toxic substance is constantly dumped into

a lake
c.d 4NV
—» WM >
e Mathematising
d: Flow Rate I\/I':d.c—d.M
c: Concentration V

V: Volume of the lake

CMEF 2009 Mathematical Modelling and Science
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Existing models (physics)

Stephan-Boltzmann law A black body (non-reflecting) at
temperature T emits a heat flux

F=0oT"

Geometry, A Spherical Planet Receiving the Sun’s Radiation
proportionality, physics

Shadow of Planet
: oh a plane perpendicular
Spherical Planet o rays of sunlight
with radius R

2

q_ e (R o
S=(1-a)kF 5 Y

solar

wremt LA

lanetary radiation — 4xR2
P (entireysphere surface) Area collecting sunlight = xR2
(sphers cross section)
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The modelling process

Existing
models
Structuring —>
Simplifyng \ Mathematising — I\I\/I/lgctigll

A certain

situation
\

Purpose
Interest

CcO EV
Real
., Data - nodel EV CcO
Collection N v co

R Doing the
mathematics

Interpreting Analvsin Math.
—> 5 e +—
Validating ysihg results
EV CO EV IN




for tackl

Using technology

CO

ng complexity

CMEF 2009

Mathematical Modelling and Science

Al B | c [ D ] E Hel H [ 1 [ R ]
f1(x) = a4 sin by (x-h4) + k4 fa(x) = az sin by (x-hg) + ka2
L 2.5m Lsopi
2 | a4 1,1 il J L] as 0,8i| J L]
| r r 2.&“
3|b, 0,564 I 5| b, 0264 | | A ) ﬂ sop
T am fi Py ]
i hy 734 | h, 514 [ 2 M vom
. L 20pi
| 6 | CAY i Y Vi vy U v U 1
| 7 |
| 8 | X fa(x) fa(x) gx)=fi(x)+f2(x) Olumsi08 O2ma0S 03ma09 O4ma0S 0Sma0s OSmai09 O7.mai09 OBmsi0s
EN 0 2892452521 142385063 4,316303156 0c:00 oocoo 0o:00 00:00 0C:00 0ocoo 0o:00 00:00
| 10 | 2| 1,810005674 162278129 3,432786959
| 11| 4/ 0,941993093 1.97430642 2916299516
| 12 | 6 1,268084251 2 38549628 3653580535
| 13 | 8 2420241219 274764804 5167889262
| 14 | 10 3,098099193 296502267 6,063121861
| 15 | 12 2536603867 298015464 5516758512
| 16 | 14| 1,369478577 278904366 4 158522237
| 17 | 16/ 0,913981902 244221213 3,356194028
| 18 | 18 1,684203379 2031349 3715552377
| 19 | 20 2,81084401 1,66507072 4475914735
| 20 | 22| 3,022337624 144020723 4,462544857
| 21| 24, 2079985105 14162038 3,496188908
| 22 | 26 1,047358588 1,59940602 2,64676461
| 23 | 28 1,089916614 194138225 3,031298864
| 24 | 30 21596267 235172709  4,511353791
| 25 | 32 3,049176489 272196111 5771137598
| 26 | 34 2754588858 295420863 5708797491
| 27 | 36 1,608345751 298707232 4,595418074
| 28 | 38 0,904137379 281186428 3716001663
129 | 40 1,436758034 24749028  3,911660833
| 30 | 42| 2605073346 206526756 4670340905
| 31| 441 3,090481637 1.69125041 4781732045
| 32 | 46| 2345134068 145172713 3,796861202
| 33 | 48 1,210256073 14100185 2620274575
| 34 | 50 0,9667108 1,57715068 2 543861475
| 35 | 52 1,889371994 190894032 3798312312
| 36 | 54 2936891839 231767498 5.254566815
| 37 | 56 2927002663 269530088 5622303547
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Solving graphically by playing with
parameters

0.5 — \\\\\\ P

E‘ 04 — PN P e S OO e
E 03— INNRRRT NN
8 PRI PR A 3
£ 0.2
2 0.1
a = _&

0 M O & O & 4 ; I\xxxx}(z ; A

1 . 1 1
0 10 20 30 40 50 60 70 80 90 100 110 120
Time (sec.)

i . . . 400 m 200 m
FIGURE B: Two-way traific, assuming a 75 second light cycle < >< >
(0.25 mi) (0.13 mi)
0.5 —
2 04— \~Q‘~C‘-\\Q§Pﬂ//{-{—'/ \\\\ c 1
= 03 L TNISISISIST S < |
8 A PSSO IS N L~ _ R |
S 02
BT % % & o BT Tw i | High School Mathematics at Work.
Time (sec) MSEB, 1998, 147-152
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Parameter Simulations

 Verhulst Model

— Simulations of the Hunting Quota (Q)

>restart;

(...)

K:=150000;r:=0.098;
#Prélevement
ListeQ:=[1000,2000,3000];
#Début des prélevements
M:=64;

#La population avec prélevement
ci2:=P(M)=Nef(M);
eqd2:=P1=r*P(t)*(K-P(1))/K-Q;
(...)

listef:=[seq(f(t),Q=ListeQ)];
plot(listef,t=0..200,0..K);

CMEF 2009

f:=t->piecewise(t<0,0,t<M,Nef(t),Paf(t)); 0+—T

P
P'=rP|1-— |-
i)
150 000 -
100 000 //
50000 |
0 500 100 150 200
f
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Parameter Simulations

* Population in competition

— Simulations of the increasing rate of one
population

500 1 / s

- P /

300 - _

N e

100 /‘Tx
] \

0 . . A . .
0 10 20 a0 41 a0
f
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Parameter Simulations

 Volterra Model (Predator and Prey)
— Simulations of the initial conditions of

3 000 3 DEII:IJ_
2 500 4000 1
2 000 i
500 L 3000 _

2000
1 000 ]

10004

0 50 100 150 200 : : ' .
T 0 a0 100 150 200
i
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Parameter Simulations

* Volterra Model
— Simulations of the recovery factor

100 - 100
20 -
60 1
A " Sick Population
Ell Recovered
Population

05 10 15 20
I
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Parameter Simulations

e Lake Pollution
— Simulations of the flow rate

CMEF 2009

1 400

1 200

1 000 —

200 —

ald —

T T 1
a 100 200 =00
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The modelling process

Existing
models
Structuring —>
Simplifyng \ Mathematising — I\I\/I/Isg(]ell

A certain

situation
\

Purpose
Interest

CcO EV
Real
., Data - nodel EV CcO
Collection N | co

R Doing the
mathematics

Interpreting Analvsin Math.
—> . . “—
Validating ysing results
EV cO EV IN




Last Step in Modelling

e Summary of the results
— Give a complete answer to the problem

— Write the final report, including the Maple
standard print out.

e Critical examination of the model

— Find some limitations of the mathematical
model used to solve the problem

Cégep de
# Rimouski
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Validate model

R
T, =T, 4/2(1—a) 4| —
T2

Known quantities : temperature of Sun Ts, albedo a,

radius of Sun Rs, distance
between Sun and Earth D

Predicted temperature : Tp=25C
Measured temperature : Tp=15C

CMEF 2009 Mathematical Modelling and Science
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Improve model

»Variable thickness of layer of greenhouse gases
»Melting snow and impact on albedo

»Water vapour (a GHG) and temperature
»Variable distance Sun-Earth

> ...

HN

N layer model HN,

L]
H2

R
2D

H2 H1

T, = T,4/(L+ N)(1- a)

Ep
AEs HI
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CMEF 2009

Building the actual object

Mathematical Modelling and Science
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