
(solutions follow)

1998-1999 Olympiad Correspondence Problems

Set 2

7. For a positive integer n, let r(n) denote the sum of the remainders when n is divided by 1, 2, · · · , n
respectively.

(a) Prove that r(n) = r(n− 1) for infinitely many positive integers n.

(b) Prove that n2/10 < r(n) < n2/4 for each integer n ≥ 7.

8. Counterfeit coins weigh a and genuine coins weigh b (a 6= b). You are given two samples of three coins
each and you know that each sample has exactly one counterfeit coin. What is the minimum number
of weighings required to be certain of isolating the two counterfeit coins by means of an accurate scale
(not a balance)?

(a) Solve the problem assuming a and b are known.

(b) Solve the problem assuming a and b are not known.

9. Similar isosceles triangles EBA, FCB, GDC and DHA are erected externally on the four sides of the
planar quadrilateral ABCD with the sides of the quadrilateral as their bases. Let M , N , P , Q be the
respective midpoints of the segments EG, HF , AC and BD. What is the shape of PMQN?

10. Given two points A and B in the Euclidean plane, let C be free to move on a circle with A as centre.
Find the locus of P , the point of intersection of BC with the internal bisector of angle A of triangle
ABC.

11. Let ABC be a triangle; let D be a point on AB and E a point on AC such that DE and BC are parallel
and DE is a tangent to the incircle of the triangle ABC. Prove that 8DE ≤ AB + BC + CA.

12. Suppose that n is a positive integer and that x + y = 1. Prove that

xn+1
n∑

k=0

(
n + k

k

)
yk + yn+1

n∑

k=0

(
n + k

k

)
xk = 1 .

Solutions

Problem 7.

7. First solution. (a) Suppose that n−1 = iqi +ri with 0 ≤ ri < i for 1 ≤ i ≤ n−1. Then n = iqi +(ri +1).
If n is a multiple of i, then ri + 1 = i. Otherwise, ri + 1 is the remainder when n is divided by i.

Thus
r(n) =

∑
{ri + 1 : 1 ≤ i ≤ n− 1, i does not divide n}

=
n−1∑

i=1

(ri + 1)−
∑

{d : d|n, 1 ≤ d < n}

= r(n− 1) + (n− 1)−
∑

{d : d|n, 1 ≤ d < n} .

Hence r(n) = r(n− 1) ⇔ the sum of the divisors of n except n itself is n− 1. If n = 2k, then the sum
of the divisors of n less than n is

1 + 2 + · · ·+ 2k−1 = 2k − 1
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with the result that r(2k) = r(2k − 1) for each positive integer k.

(b) Let n = 2k where k ≥ 4. Then, since 2k = 2(k − 1) + 2, k − 1 does not divide 2k. Considering
division by k − 1, k, k + 1, · · ·, 2k − 1, we find for even n = 2k ≥ 8 that

r(n) = r(2k) ≥ 2 + (k − 1) + (k − 2) + · · ·+ 2 + 1

=
1
2
k(k − 1) + 2 =

1
8
(n2 − 2n + 16)

=
n2

10
+

(n− 5)2 + 55
40

≥ n2

10
and

r(n) = r(2k) ≤ [1 + 2 + · · ·+ (k − 2)] + [(k − 1) + · · ·+ 2 + 1]

= (k − 1)2 <
n2

4
.

Let n = 2k + 1 where k ≥ 2. Then considering division by k, k + 1, · · ·, 2k, we find for n ≥ 5 that

r(n) = r(2k + 1) ≥ 1 + k + (k − 1) + · · ·+ 1

=
1
2
k(k + 1) + 1 >

1
8
(n2 − 1)

=
n2 + 7

8
=

n2

10
+

n2 + 35
40

>
n2

10
and

r(n) = r(2k + 1) ≤ [1 + · · ·+ (k − 1)] + [k + (k − 1) + · · ·+ 1]

= k2 <
n2

4
.

7. Second solution. (a) By inspection, we conjecture that r(2k) = r(2k − 1) for each positive integer k.
Consider any positive integer s between 1 and 2k which is not a power of 2. Since s does not divide 2k,
2k must leave remainder 1 more than the corresponding remainder for 2k − 1 upon division by s. These
values of s contribute 2k − (k + 1) more to the sum for r(2k) than to the sum for r(2k − 1).

Consider now the numbers of the form 2t where 0 ≤ t ≤ k−1. Divided into 2k, they leave no remainder,
while divided into 2k − 1, they leave a remainder of 2t − 1. These values of 2t contribute

k−1∑
t=0

(2t − 1) = (1 + 2 + · · ·+ 2k−1)− k = 2k − (k + 1)

more to the sum for 2k − 1 than to the sum for r(2k). Since 2k leaves no remainder when divided by
2k, it follows that r(2k − 1) = r(2k).

(b) Let n = 2m. If m < r < n, then n = r + (n− r) with n− r < r. Hence

r(n) ≥
n−1∑

r=m+1

(2m− r) =
m−1∑
s=1

s =
(m− 1)m

2
=

m2

2

(
1− 1

m

)

=
n2

8

(
1− 2

n

)
≥ n2

10

when n ≥ 10. Let n = 2m + 1. If m < r < n, then

r(n) ≥
n∑

r=m+1

(n− r) =
2m∑

r=m+1

(2m + 1− r) =
m∑

s=1

s

=
m(m + 1)

2
=

(2m + 1)2 − 1
8

=
n2 − 1

8
≥ n2

10

2



for n ≥ 3. Since r(8) = 8 > 82/10, we have that r(n) ≥ n2/10 for n ≥ 7.

Now for the reverse inequality. If 2 ≤ r ≤ n/2, the remainders upon division by r do not exceed r − 1,
while if n/2 < r ≤ n, we know exactly what the remainders are. Thus

r(2m) ≤
m−1∑
r=3

(r − 1) +
m−1∑
s=1

s = m2 − 2m < m2

and

r(2m + 1) ≤
m∑

r=2

(r − 1) +
m∑

s=1

s = m2 .

¿From these we deduce that r(n) < n2/4 for all n.

Problem 8.

8. First solution. The problem can be solved in three weighings when the weights are known and in four
weighings when the weights are not known. Let the two samples be {A,B, C} and {P, Q,R} and let wi

be the result of the ith weighing.

(a) Weigh A and P . If w1 = 2a, then both coins are counterfeit. Otherwise, weigh B and Q next. If
w1 = w2 = 2b, then C and R are counterfeit. If w1 = w2 = a+ b, then C and R must be genuine; weigh
A to determine its status; if, for example, A is genuine, then B and P are counterfeit. Finally, supppose,
say, that w1 = 2b and w2 = a + b, then A and P are genuine and one of B and Q is counterfeit, as is
one of C and R. A third weighing to discover the status of B will allow one to deduce the status of the
remaining coins.

The problem cannot be solved in two weighings. There is no point in putting all coins from either lot on
the scale as this would provide no new information. Since learning the weight of one coin in a sample
is equivalent to learning the total weight of the other two, the effective choices for a weighing are: (1)
one coin (say A); (2) one coin from each sample (say A and P ); (3) one coin from one sample and two
from the other (say A, P , Q).

Suppose that a single coin A was selected for the first weighing and found to be genuine. Then the
second weighing would identify the two counterfeit coins only if they were the only two coins either put
on the scale or left off the scale. But ensuring the first possibility would require one coin from each
sample on the second weighing while ensuring the second would require three coins on the scale, and
these two options are inconsistent. Thus, the determination cannot be made sure in two weighings.

Suppose that one coin from each sample was taken on the first weighing and at least one found to be
genuine. If both were found to be genuine, then the second weighing would have to involve at least
one coin from each pile. If the second weighing revealed all genuine or two counterfeit coins, then this
would settle the matter only if it involved exactly one coin from each pile. But in this case, if the
second weighing resulted in one genuine and one coutnerfeit coin, we would not know when coin in
either weighing was counterfeit.

Finally, suppose A, P and Q were weighed to begin with. If all were genuine, then the second weighing
would identify the two remaining counterfeit coins only if they were the only two coins on the scale, and
we cannot guarantee this in advance.

(b) First solution. On the first three weighings, weigh the sets {A, P}, {B, Q} and {C,R}. Two of
the three weights must be the same, either 2b, 2b, 2a in some order or a + b, a + b, 2b in some order.
Suppose, wolog, that w1 = w2. For the fourth and final weighing, select A and obtain the weight w4. If
w4 = w1/2 = w2/2, then A, P , B and Q weigh the same and C and R are counterfeit. If w4 = w3/2,
then A is genuine and B and P are counterfeit. If w4 has neither of these values, then A is counterfeit
along with Q.
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Three weighings do not suffice. A single weighing gives absolutely no information about the character
of the coins since we do not know a and b. Essentially, all we find out is the average weight of a coin.
Suppose the average weight of a coin in the first weighing is p and the average weight of a coin in the
second weighing is q. Either p = q or p 6= q. There are nine possibilities for the pair of counterfeit coins,
and one of the outcomes from the first two weighings must leave at least five of them extant. If r is the
average weighing of the coins in the third weighing, there are at most three outcomes (whether r is equal
to none, one or both of p and q), and this does not suffice to distinguish among the five possibilities.

Comment: Another suggested possibility is to weigh a fixed coin of one pile with each of the coins in
the second pile for the first three weighings. This will identify the counterfeit coin in the second pile.
Now take it from there.

(b) Second solution. For the first two weighings, weigh A and B individually. If A and B weigh the
same, then we know that C is counterfeit and what the weight of a genuine coin is. For the third and
fourth weighings, weigh P and Q, and the situation can now be determined. Suppose that the weights
are different, i.e. w1 6= w2. We know that C must be genuine. For the third weighing, weigh C and
P . If the result is 2w1, then P must be genuine and we know that the counterfeit coin must weigh w2;
now weigh Q to determine its status, and so deduce the status of R. If the weight is 2w2, then we can
conduct a similar analysis. If the result is w1 + w2, then P must be counterfeit (since C is genuine).
Now weigh Q to find the weight of a genuine coin and so determine which of A and B is genuine.

Problem 9.

9. First solution. See Figure 9.1. Represent the points in the problem as complex numbers. Let I,
J , K, L be the respective midpoints of AB, BC, CD, DA. Then, by the similarity of the triangular
“ears”, there is a real number U for which

E − I = iU(A−B), F − J = iU(B − C), G−K = iU(C −D), H − L = iU(D −A)

I =
1
2
(A + B), J =

1
2
(B + C), K =

1
2
(C + D), L =

1
2
(D + A)

and

M =
1
2
(E + G) =

1
2
(I + K + iU(A−B + C −D)) =

1
4
(A + B + C + D + 2iU(A−B + C −D))

N =
1
2
(H + F ) =

1
4
(A + B + C + D + 2iU(B − C + D −A)) .

Also P = 1
2 (A + C) and Q = 1

2 (B + D). It follows that M + N = 1
2 (A + B + C + D) = P + Q. Also

M − N = iU(A − B + C − D) = i2U(P − Q), so that MN and PQ right bisect each other and so
MPNQ is a rhombus.
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9. Second solution. [K. Choi] See Figures 9.1 and 9.2. Let I, J , K, L be the respective midpoints of
AB, BC, CD, DA respectively. Since IJKL is a parallelogram, its diagonals IK and JL bisect each
other in a point O. Since LQ and PJ are both parallel to AB and LP and QJ are both parallel to CD,
LQJP is a parallelogram and so JL and PQ bisect each other in the point O. Now −−→

OE = −→
OI + −→

IE
and −−→OG = −−→

OK + −−→
KG = −→

IO + −−→
KG, whence −−→OM = 1

2 (−−→OE + −−→
OG) = 1

2 (−→IE + −−→
KG). Similarly, −−→ON =

1
2 (−−→OF +−−→

OH) = 1
2 (−→JF +−−→

LH). Hence −−→OM +−−→
ON = 1

2 (−→IE +−−→
KG +−→

JF +−−→
LH).

But a certain rotation and a dilation takes −→IE to −−→BA, −→JF to −−→CB, etc, and we deduce that −−→OM +−−→ON = 0
and PMQN is a parallelogram. Further, −→QL = 1

2

−−→
BA and −→LP = 1

2

−−→
DC whence −−→QP = 1

4 (−−→BA +−−→
DC) and−−→

NM = −−→
OM − −−→ON = 2−−→OM = −→

IE + −−→
KG. Since −−→BA ⊥ −→

IE and −−→DC ⊥ −−→
KG (with the perpendicularity

implemented by the same transformation), we have that −−→QP ⊥ −−→
NM and so PMQN is a rhombus.

Problem 10.

10. First solution. Since AP bisects 6 CAB, then BP : PC = BA : CA, the latter ratio being constant.
Thus, the locus of P is the image of the locus of C with respect to a dilatation with centre B and factor
|BP |/|BC|. Since |BP | : |BC| = |AB| : (|CA|+ |AB|), observe that this circle passes through A, with
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P coinciding with A when CAB is collinear.

10. Second solution. [J. Lei] Select O so that AO : OB = AC : AB. Then CP : PB = AC : AB = AO :
OB ⇒ AC‖OP ⇒ 6 APO = 6 CAP = 6 PAO ⇒ AO = OP so that P moves on a circle of radius |AO|
and centre O.

Conversely, let P be a point on the circle of radius |AO| and centre O. Produce BP to C so that
CP : PB = AO : OB, Then CA‖PO and CA : AB = PO : OB = CP : PB, so that AP bisects angle
CAB and AC is of constant length. The point C must be on the original circle. For, if not, a point C ′

on the circle with 6 C ′AB = 6 CAB would give a point P ′ 6= P and yield a contradiction.

10. Third solution. Let B be located at (0, 0) and A at (1, 0) in the cartesian plane. Let C move on the
circle of equation (x − 1)2 + y2 = r2, so that the coordinates of C have the form (1 + r cos θ, r sin θ)
(0 ≤ θ < 2π). The bisector of 6 BAC passes through the point

(
1 + r cos

(
θ + π

2

)
, r sin

(
θ + π

2

))
=

(
1− r sin

θ

2
, r cos

θ

2

)

and so has the equation

y = −
(

cot
θ

2

)
(x− 1) = −1

t
(x− 1)

where t = tan θ
2 . The equation of BC is

y =
r sin θ

1 + r cos θ
x =

2rt

(1 + r) + (1− r)t2
x

since sin θ = 2t(1 + t2)−1 and cos θ = (1− t2)(1 + t2)−1. The intersection point of the two lines is

(x, y) =
(

(1 + r) + (1− r)t2

(1 + r)(1 + t2)
,

2rt

(1 + r)(1 + t2)

)

=
(

(1 + t2) + r(1− t2)
(1 + r)(1 + t2)

,
2rt

(1 + r)(1 + t2)

)

=
(

1
1 + r

[1 + r cos θ],
1

1 + r
[r sin θ]

)

which tracks around the circle of equation

(
x− 1

1 + r

)2

+ y2 =
(

r

1 + r

)2

,

which passes through (1, 0), the centre of the circle upon which C moves.

10. Fourth solution. See Figure 10.4. Since b2 = d2 + s2 − 2ds cos θ and c2 = r2 + s2 − 2rs cos θ,

d2

r2
=

b2

c2
=

d2 + s2 − 2ds cos θ

r2 + s2 − 2rs cos θ

from which s(r − d)(rs + ds− 2rd cos θ) = 0. Hence, either r = d or (r + d)s = 2rd cos θ.

Suppose that r = d. Then B lies on the circle and AP right bisects BC. Hence 6 APB = 90◦ and so P
tracks a circle with diameter AB.

Suppose that (r +d)s = 2rd cos θ. Then (1/s) cos θ = 1
2 ((1/r)+ (1/d)), a constant. This means that the

segment AQ on AP produced with |AP ||AQ| = 1 has constant perpendicular projection on AB, and
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so Q tracks along a line perpendicular to AB. Since P is the image of Q with respect to inversion in a
circle with centre A and radius 1, P must move on a circle that passes through A. (Cf. Problem 5.)

Problem 11.

11. First solution. Since triangles ADE and ABE are similar,

|DE|
a

=
c sin B − 2r

c sin B
= 1− 2r

c sin B
= 1−

(
2rs

ac sin B

)
a

s
= 1− a

s

since the area of triangle ABC is equal to both rs and 1
2ac sinB, where 2s = a + b + c. Thus, we have

to show that

8
(

a− a2

s

)
≤ a + b + c = 2s .

But this follows from

2s− 8
(

a− a2

s

)
=

2
s
[s2 − 4as + 4a2] =

2
s
(s− 2a)2 ≥ 0 .
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11. Second solution. See Figure 11.2. Let u, v, w be the respective lengths of the tangents from A, B,
C to the incircle.Since DH = DF and EK = EF , the perimeter of triangle ADE is 2u. The perimeter
of triangle ABC is 2(u + v + w). Since triangles ADE and ABC are similar,

|DE|
|BC| =

u

u + v + w

so that

|DE| = u(v + w)
u + v + w

.

Since

2(u + v + w)− 8u(v + w)
u + v + w

=
2

u + v + w
[u2 + v2 + w2 − 2uv − 2uw + 2vw]

=
2

u + v + w
(u− v − w)2 ≥ 0 ,

the result follows.

11. Third solution. Let r be the inradius and let 2α, 2β and 2γ be the respective angles at A, B and C.
Then

DE = r(tan β + tan γ), BC = r(cotβ + cot γ) ,

AB + BC + CA = 2r(cotα + cot β + cot γ) = 2r cot α cot β cot γ .

(The proof of the requisite identity is given below.) Now

cot α = tan(β + γ) =
tan β + tan γ

1− tan β tan γ

so that
tan β + tan γ = cot α[1− tan β tan γ]

and
DE = r cot α[1− tan β tan γ] .

Let t = tan β tan γ. Then
8DE ≤ AB + BC + CA

is equivalent to
4− 4 tan β tan γ ≤ cot β cot γ
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which in turn is equivalent to
4t2 − 4t + 1 = (2t− 1)2 ≥ 0 .

Thus, the result is established once we verify that the product of the cotangents of angles summing to
90◦ is equal to the sum of the same cotangents. But, if α + β + γ = 90◦, then

cot α + cot β + cot γ =
sin(α + β)
sin α sin β

+
cos γ

sin γ

= cos γ

[
sin γ + sin α sin β

sinα sin β sin γ

]

= cos γ

[
cos(α + β) + sin α sin β

sin α sin β sin γ

]

= cos γ

[
cos α cos β

sin α sinβ sin γ

]
= cot α cot β cot γ .

Comment. Equality occurs when s = 2a (b + c = 3a) and when tan β tan γ = 1/2.

Problem 12.

12. First solution. We first establish the equation when 0 ≤ x, y ≤ 1. Consider a biased coin, which when
tossed, returns heads with a probability of x and tails with a probability of y. The coin is tossed
repeatedly until either heads appears n + 1 times or tails appears n + 1 times. In order to achieve this,
the coin has to be tossed at least n + 1 times but no more than 2n + 1 times.

Suppose that 0 ≤ k ≤ n. The probability that the (n + 1)th head appears on the (n + k + 1)th toss is(
n+k

k

)
xn+1yk since the k positions for tails is one of the first n + k tosses. Similarly, the (n + 1)th tail

appears on the (n + k + 1)th toss with probability
(
n+k

k

)
yn+1xk. Since this covers all eventualities, we
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have that

1 = xn+1
n∑

k=0

(
n + k

k

)
yk + yn+1

n∑

k=0

(
n + k

k

)
xk .

Replace y by 1 − x in the equation. This is a polynomial equation in x of degree at most n + 1 with
infinitely many solutions (any x with 0 ≤ x ≤ 1), and so it is an identity. Thus the equation holds for
each complex x.

12. Second solution.

1 = (x + y)n+1 =
n+1∑

k=0

(
n + 1

k

)
xn+1−kyk

= xn+1 +
[ n∑

k=1

(
n + 1

k

)
xn+1−kyk(x + y)

]
+ yn+1

= xn+1 +
(

n + 1
1

)
xn+1y +

n∑

k=2

[(
n + 1

k

)
+

(
n + 1
k − 1

)]
xn+2−kyk +

(
n + 1

n

)
xyn+1 + yn+1

=
[
xn+1

1∑

k=0

(
n + k

k

)
yk

]
+

[ n∑

k=2

(
n + 2

k

)
xn+2−kyk(x + y)

]
+

[
yn+1

1∑

k=0

(
n + k

k

)
xk

]

= xn+1
2∑

k=0

(
n + k

k

)
yk +

n∑

k=3

[(
n + 2

k

)
+

(
n + 2
k − 1

)]
xn+3−kyk + yn+1

2∑

k=0

(
n + k

k

)
xk

= xn+1
2∑

k=0

(
n + k

k

)
yk +

[ n∑

k=3

(
n + 3

k

)
xn+3−kyk(x + y)

]
+ yn+1

2∑

k=0

(
n + k

k

)
xk

= · · · = xn+1
r∑

k=0

(
n + k

k

)
yk +

n∑

k=r+1

(
n + r + 1

k

)
xn+r+1−kyk(x + y) + yn+1

r∑

k=0

(
n + k

k

)
xk

= xn+1
r+1∑

k=0

(
n + k

k

)
yk +

n∑

k=r+2

[(
n + r + 1

k

)
+

(
n + r + 1

k − 1

)]
xn+r+2−kyk + yn+1

r+1∑

k=0

(
n + k

k

)
xk

= xn+1
r+1∑

k=0

(
n + k

k

)
yk +

n∑

k=r+2

(
n + r + 2

k

)
xn+r+2−kyk(x + y) + yn+1

r+1∑

k=0

(
n + k

k

)
xk

= · · · = xn+1
n−1∑

k=0

(
n + k

k

)
yk +

(
2n

n

)
xnyn(x + y) + yn+1

n−1∑

k=1

(
n + k

k

)
xk

= xn+1
n∑

k=0

(
n + k

k

)
yk + yn+1

n∑

k=0

(
n + k

k

)
xk .

10



12. Third solution. [D. Pritchard] Let pn(x, y) denote the polynomial on the left side. Since p1(x, y) = 1, it
suffices to show that pn+1(x, y) = pn(x, y) for each positive integer n. But

pn+1(x, y)− pn(x, y) =
n+1∑

k=0

(
n + 1 + k

k

)
(xn+2yk + xkyn+2)−

n∑

k=0

(
n + k

k

)
(xn+1yk + xkyn+1)

=
(

2n + 2
n + 1

)
(xn+2yn+1 + xn+1yn+2) +

n∑

k=0

(
n + 1 + k

n + 1

)
(xn+2yk + xkyn+2)

−
n∑

k=0

[(
n + k + 1

n + 1

)
−

(
n + k

n + 1

)]
(xn+1yk + xkyn+1)

= 2
(

2n + 1
n

)
(x + y)(xn+1yn+1) +

n∑

k=0

(
n + 1 + k

n + 1

)
(xn+2yk + xkyn+2 − xn+1yk − xkyn+1)

+
n∑

k=1

(
n + k

n + 1

)
(xn+1yk + xkyn+1)

= 2
(

2n + 1
n + 1

)
xn+1yn+1 +

(
2n + 1
n + 1

)
(xn+2yn + xnyn+2 − xn+1yn − xnyn+1)

+
n−1∑

k=0

(
n + 1 + k

n + 1

)
(xn+2yk + xkyn+2 − xn+1yk − xkyn+1 + xn+1yk+1 + xk+1yn+1)

=
(

2n + 1
n + 1

)
(x + y − 1)(xn+1yn + xnyn+1) +

n−1∑

k=0

(
n + 1 + k

n + 1

)
(x + y − 1)(xn+1yk + xkyn+1)

= 0 .

12. Fourth solution.[D. Brox] Let un(x, y) = xn+1
∑n

k=0

(
n+k

k

)
yk. Then, for each positive integer n exceeding

1,
un(x, y)− xun−1(x, y)

= xn+1

((
2n

n

)
yn +

n−1∑

k=0

[(
n + k

k

)
−

(
n− 1 + k

k

)]
yk

)

= xn+1

((
2n

n

)
yn + y

n−1∑

k=1

(
n + k − 1

k − 1

)
yk−1

)

=
(

2n

n

)
xn+1yn + y[un(x, y)− xn+1

(
2n− 1
n− 1

)
yn−1 − xn+1

(
2n

n

)
yn]

= yun(x, y)−
(

2n− 1
n− 1

)
xn+1yn +

(
2n

n

)
xn+1yn(1− y)

= (1− x)un(x, y)−
(

2n− 1
n− 1

)
xn+1yn +

(
2n

n

)
xn+2yn

so that

un(x, y)− un−1(x, y) = −
(

2n− 1
n− 1

)
xnyn +

(
2n

n

)
xn+1yn .

Similarly

un(y, x)− un−1(y, x) = −
(

2n− 1
n− 1

)
xnyn +

(
2n

n

)
xnyn+1 .

Hence

[un(x, y) + un(y, x)]− [un−1(x, y) + un−1(y, x)] = −
(

2n

n

)
xnyn +

(
2n

n

)
xnyn(x + y) = 0

11



from which the result can be obtained.

12. Fifth solution. [D. Arthur] Let f(n) =
∑n

k=0

(
n+k

k

)
xkyk[xn−k+1 + yn−k+1] and

g(n, m) =
m−1∑

k=0

(
n + 1 + k

k

)
xkyk[xn−k+2 + yn−k+2] +

(
n + m

m− 1

)
xmym[xn−m+1 + yn−m+1]

+
n∑

k=m

(
n + k

k

)
xkyk[xn−k+1 + yn−k+1] ,

where n and m are nonnegative integers with 0 ≤ m ≤ n + 1. Then g(n, 0) = f(n) and

g(n, n + 1) =
n∑

k=0

(
n + 1 + k

k

)
xkyk[xn−k+2 + yn−k+2] +

(
2n + 1

n

)
xn+1yn+1(2)

=
n∑

k=0

(
n + 1 + k

k

)
xkyk[xn−k+2 + yn−k+2] +

(
2n + 2
n + 1

)
xn+1yn+1 = f(n + 1) .

To establish the result, it suffices to show that for each fixed n ≥ 1, g(n,m) is constant with respect to
m.
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g(n,m) =
m−1∑

k=0

(
n + 1 + k

k

)
xkyk[xn−k+2 + yn−k+2] +

(
n + m

m− 1

)
xmym[xn−m+1 + yn−m+1]

+
n∑

k=m

(
n + k

k

)
xkyk[xn−k+1 + yn−k+1]

=
m−1∑

k=0

(
n + 1 + k

k

)
xkyk[xn−k+2 + yn−k+2] +

[(
n + m

m− 1

)
+

(
n + m

m

)]
xmym[xn−m+1 + yn−m+1]

+
n∑

k=m+1

(
n + k

k

)
xkyk[xn−k+1 + yn−k+1]

=
m−1∑

k=0

(
n + 1 + k

k

)
xkyk[xn−k+2 + yn−k+2] +

(
n + m + 1

m

)
xmym[xn−m+1 + yn−m+1]

+
n∑

k=m+1

(
n + k

k

)
xkyk[xn−k+1 + yn−k+1]

=
m−1∑

k=0

(
n + 1 + k

k

)
xkyk[xn−k+2 + yn−k+2] +

(
n + m + 1

m

)
xmym[xn−m+1 + yn−m+1][x + y]

+
n∑

k=m+1

(
n + k

k

)
xkyk[xn−k+1 + yn−k+1]

=
m−1∑

k=0

(
n + 1 + k

k

)
xkyk[xn−k+2 + yn−k+2] +

(
n + m + 1

m

)
xm+1ym+1[xn−m + yn−m]

+
(

n + m + 1
m

)
xmym[xn−m+2 + yn−m+2] +

n∑

k=m+1

(
n + k

k

)
xkyk[xn−k+1 + yn−k+1]

=
m∑

k=0

(
n + 1 + k

k

)
xkyk[xn−k+2 + yn−k+2] +

(
n + m + 1

m

)
xm+1ym+1[xn−m + yn−m]

+
n∑

k=m+1

(
n + k

k

)
xkyk[xn−k+1 + yn−k+1]

= g(n, m + 1) .

The desired result follows.
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