Solutions for March

605. Prove that the number $299 \cdots 998200 \cdots 029$ can be written as the sum of three perfect squares of three consecutive numbers, where there are $n-1$ nines between the first 2 and the 8 , and $n-1$ zeros between the last pair of twos.

Solution. Let $a-1, a, a+1$ be the three consecutive numbers. The sum of their square is $3 a^{2}+2$; setting this equal to the given number yields

$$
\begin{aligned}
a^{2} & =9 \cdot 10^{2 n+1}+\cdots+9 \cdot 10^{n+3}+9 \cdot 10^{n+2}+4 \cdot 10^{n+1}+9 \\
& =\left(10^{n}-1\right) 10^{n+2}+4 \cdot 10^{n+1}+9=10^{2 n+2}-6 \cdot 10^{n+1}+9 \\
& =\left(10^{n+1}-3\right)^{2},
\end{aligned}
$$

so that $a=10^{n+1}-3$.
606. Let $x_{1}=1$ and let $x_{n+1}=\sqrt{x_{n}+n^{2}}$ for each positive integer n. Prove that the sequence $\left\{x_{n}: n>1\right\}$ consists solely of irrational numbers and calculate $\sum_{k=1}^{n}\left\lfloor x_{k}^{2}\right\rfloor$, where $\lfloor x\rfloor$ is the largest integer that does not exceed x.

Solution. We prove that x_{n} is nonrational as well as positive for $n \geq 2$. Note that x_{2} is nonrational. Suppose that $n \geq 2$ and that x_{n+1} were rational; then $x_{n}=x_{n+1}^{2}-n^{2}$ would also be rational; repeating this would lead to x_{2} being rational and a contradiction.

Observe that, for any positive integer $n \geq 2$,

$$
x_{n}=\sqrt{x_{n-1}+(n-1)^{2}}>n-1 .
$$

We prove by induction that $x_{n}<n$. This is true for $n=2$. If $x_{n-1}<n-1$, then

$$
x_{n}^{2}=x_{n-1}+(n-1)^{2}<(n-1) n<n^{2},
$$

and the desired result follows. Thus, for each $n \geq 2,\left\lfloor x_{n}\right\rfloor=n-1$,
For $n \geq 3$,

$$
\left\lfloor x_{n}^{2}\right\rfloor=\left\lfloor x_{n-1}+(n-1)^{2}\right\rfloor=(n-2)+(n-1)^{2}=n^{2}-n-1=n(n-1)-1 .
$$

Therefore

$$
\begin{aligned}
\sum_{k=1}^{n}\left\lfloor x_{k}^{2}\right\rfloor & =\left\lfloor x_{1}^{2}\right\rfloor+\left\lfloor x_{2}^{2}\right\rfloor+\sum_{k=3}^{n}\left\lfloor x_{k}^{2}\right\rfloor \\
& =3+\left[\left(\sum_{k=3}^{n} k(k-1)\right]-(n-2)\right. \\
& =5-n+\frac{1}{3} \sum_{k=3}^{n}[(k+1) k(k-1)-k(k-1)(k-2)] \\
& =5-n+\frac{1}{3}[(n+1) n(n-1)-6]=3-n+\frac{1}{3}\left(n^{3}-n\right) \\
& =\frac{1}{3}\left(n^{3}-4 n+9\right)
\end{aligned}
$$

607. Solve the equation

$$
\sin x\left(1+\tan x \tan \frac{x}{2}\right)=4-\cot x
$$

Solution. For the equation to be defined, x cannot be a multiple of π, so that $\sin x \neq 0$. Rearranging the terms of the equation and manipulating yields that

$$
\begin{aligned}
4 & =\cot x+\sin x\left(\frac{\cos x \cos \frac{x}{2}+\sin x \sin \frac{x}{2}}{\cos x \cos \frac{x}{2}}\right) \\
& =\cot x+\sin x\left(\frac{\cos (x-(x / 2))}{\cos x \cos (x / 2)}\right) \\
& =\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\sin x \cos x}=\frac{2}{\sin 2 x},
\end{aligned}
$$

whence $\sin 2 x=\frac{1}{2}$. Therefore $x=(-1)^{k} \frac{\pi}{12}+\frac{k \pi}{2}$, where k is an integer.
608. Find all positive integers n for which $n, n^{2}+1$ and $n^{3}+3$ are simultaneously prime.

Solution. If $n=2$, then the numbers are 2,5 and 11 and all are prime. Otherwise, n must be odd. But in this case, the other two numbers are even exceeding 2 and so nonprime. Therefore $n=2$ is the only possibility.
609. The first term of an arithmetic progression is 1 and the sum of the first nine terms is equal to 369. The first and ninth terms of the arithmetic progression coincide respectively with the first and ninth terms of a geometric progression. Find the sum of the first twenty terms of the geometric progression.

Solution. The sum of the first nine terms of an arithmetic progression is equal to $9 / 2$ the sum of the first and ninth terms, from which it is seen that the ninth term is 81 . Let r be the common ratio of the geometric progression whose first term is 1 and whose ninth term is 81 . Then $r^{8}=81$, whence $r= \pm \sqrt{3}$. The sum of the first twenty terms of the geometric progression is $\frac{1}{2}\left(3^{10}-1\right)(\pm \sqrt{3}+1)$.
610. Solve the system of equations

$$
\begin{aligned}
& \log _{10}\left(x^{3}-x^{2}\right)=\log _{5} y^{2} \\
& \log _{10}\left(y^{3}-y^{2}\right)=\log _{5} z^{2} \\
& \log _{10}\left(z^{3}-z^{2}\right)=\log _{5} x^{2}
\end{aligned}
$$

where $x, y, z>1$.
Solution. For $x>1$, let

$$
f(x)=5^{\log _{10}\left(x^{3}-x^{2}\right)}
$$

The three equations are $f(x)=y^{2}, f(y)=z^{2}$ and $f(z)=x^{2}$. Since $x^{3}-x^{2}=x^{2}(x-1)$ is increasing, f is an increasing function. If, say, $x<y$, then $y<z$ and $z<x$, yielding a contradiction. Thus, we can only have that $x=y=z$ and so

$$
\log _{10}\left(x^{3}-x^{2}\right)=\log _{5} x^{2}
$$

Let $2 t=\log _{5} x^{2}$ so that $t>0, x^{2}=5^{2 t}$ and so $x=5^{t}$. Therefore

$$
5^{3 t}-5^{2 t}=10^{2 t} \Longrightarrow 5^{t}-1=4^{t} \Longrightarrow 5^{t}-4^{t}=1 .
$$

Since $5^{t}-4^{t}=4^{t}\left[(5 / 4)^{t}-1\right]$ is an increasing function of t, we see that the equation for t has a unique solution, namely $t=1$. Therefore $x=5$.
611. The triangle $A B C$ is isosceles with $A B=A C$ and I and O are the respective centres of its inscribed and circumscribed circles. If D is a point on $A C$ for which $I D \| A B$, prove that $C I \perp O D$.

Solution. Since $A B C$ is isosceles, the points A, O, I lie on the right bisector of $B C$. Let $A O$ meet $B C$ at $P, D I$ meet $B C$ at $E, D O$ meet $B C$ at F and $C I$ meet $D F$ at Q.

Suppose that angle A is less than 60°. Then O lies between I and A, and Q lies within triangle $A P B$. Since $D E \| A B$ and O is the centre of the circumcircle of $A B C$, we have that

$$
\angle C D I=\angle B A C=\angle C O I,
$$

so that CIOD is concyclic. Therefore

$$
\begin{aligned}
\angle C Q D & =180^{\circ}-(\angle Q O I+\angle Q I O)=180^{\circ}-(\angle I C D+\angle P I C) \\
& =180^{\circ}-(\angle I C P+\angle P I C)=90^{\circ} .
\end{aligned}
$$

Suppose that angle A exceeds 60°. Then I lies between O and A, and Q lies on the same side of $A P$ as C. Since

$$
\angle I D C+\angle I O C=\angle B A C+\angle A O C=180^{\circ},
$$

the quadrilateral $I O C D$ is concyclic. Therefore

$$
\begin{aligned}
\angle C Q D & =180^{\circ}-(\angle D C Q+\angle Q D C)=180^{\circ}-(\angle Q C P+\angle O D C) \\
& =180^{\circ}-(\angle Q C P+\angle O I C)=180^{\circ}-(\angle I C P+\angle P I C)=90^{\circ} .
\end{aligned}
$$

Finally, if $\angle A=60^{\circ}$, then I and O coincide so that $D F=D E \| A B$ and the result is clear.

