
Solutions for April

612. ABCD is a rectangle for which AB > AD. A rotation with centre A takes B to a point B′ on CD; it
takes C to C ′ and D to D′. Let P be the point of intersection of the lines CD and C ′D′. Prove that
CB′ = DP .

Solution 1. [N. Lvov; K. Zhou] Since 6 CB′P = 90◦ − 6 DB′A = 6 DAB′ and AD = BC = B′C ′,
triangles AB′D and B′PC are congruent (ASA). Therefore

DP = B′P −B′D = AB′ −B′D

= AB −B′D = CD −B′D = CB′ .

Solution 2. Let the respective lengths of AB and BC be a and b respectively, and suppose that the
rotation about A is through the angle 2α. Then 6 CBB′ = α and we find that

a = b(tanα + cot 2α)

= b

(
sinα

cos α
+

cos 2α

sin 2α

)
= b

(
2 sin2 α + 1− 2 sin2 α

sin 2α

)
= b

(
1

sin 2α

)
.

Since |B′C ′| = b and 6 C ′B′P = 90◦ − 2α, then 6 B′PC ′ = 2α. Thus sin 2α = |B′C ′|/|B′P |, so that
|B′P | = b/ sin 2α = a = |CD|. The result follows.

Solution 3. [A. Dhawan] The circle with centre A and radius |AD| passes though D and D′; the tangent
through P are PD and PD′ and so

6 DAP =
1
2
6 D′AD =

1
2
6 B′AB .

Also, we have that

6 B′BC = 90◦ − 6 B′BA =
1
2
(180◦ − 6 B′BA− 6 BB′A) =

1
2
6 B′AB ,

so that 6 PAD = 6 B′BC. Since also 6 PDA = 90◦ = 6 B′CB and DA = CB, triangles PDA and B′CB
are congruent (ASA). Therefore PD = B′C.

613. Let ABC be a triangle and suppose that

tan
A

2
=

p

u
tan

B

2
=

q

v
tan

C

2
=

r

w
,

where p, q, r, u, v, w are positive integers and each fraction is written in lowest terms.

(a) Verify that pqw + pvr + uqr = uvw.

(b) Let f be the greatest common divisor of the pair (vw − qr, qw + vr), g be the greatest common
divisor of the pair (uw−pr, pw+ur), and h be the greatest common divisor of the pair (uv−pq, pv+qu).
Prove that

fp = vw − qr fu = qw + vr

gq = uw − pr gv = pw + ur
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hr = uv − pq hw = pv + qu .

(c) Prove that the sides of the triangle ABC are proportional to fpu : gqv : hrw.

Solution 1. Since A/2 and B/2 + C/2 are complementary, cot(A/2) = tan(B/2 + C/2), whence

u

p
=

qw + vr

vw − qr
.

Parts (a) and (b) follow immediately.

The sides of the triangle are proportional to sinA : sinB : sinC. Now

sinA =
2 tan A

2

sec2 A
2

=
2pu

p2 + u2
=

2fpu

f(p2 + u2)
;

sinB =
2 tan B

2

sec2 B
2

=
2qv

q2 + v2
=

2gqv

g(q2 + v2)
;

sinC =
2 tan C

2

sec2 C
2

=
2rw

r2 + w2
=

2hrw

h(r2 + w2)
.

From (b), we have that
f2(p2 + u2) = (q2 + v2)(r2 + w2)

so that
f2(p2 + u2)2 = (p2 + u2)(q2 + v2)(r2 + w2) .

Similar equations hold for g and h. We find that

f(p2 + u2) = g(q2 + v2) = h(r2 + w2) .

Hence sin A : sinB : sinC = fpu : gqv : hrw as desired.

Solution 2. (a) and (b) can be obtained as above. For (c), let x, y, z be the respective distances from
A,B, C to the adjacent tangency points of the incircle of triangle ABC. Then tanA/2 = r/x, tan B/2 = r/y
and tan C/2 = r/z. Also a = y + z, b = z + x and c = x + y. It follows that

a : b : c = y + z : z + x : x + y

=
(

1
tanB/2

+
1

tanC/2

)
:
(

1
tanC/2

+
1

tanA/2

)
:
(

1
tanA/2

+
1

tanB/2

)
=

(
v

q
+

w

r

)
:
(

w

r
+

u

p

)
:
(

u

p
+

v

q

)
= p(qw + vr) : q(pw + ru) : r(pv + qu) = fpu : gqv : hrw .

614. Determine those values of the parameter a for which there exist at least one line that is tangent to the
graph of the curve y = x3 − ax at one point and normal to the graph at another.

Solution. The tangent at (u, u3 − au) has equation y = (3u2 − a)x− 2u3. This line intersects the curve
again at the point whose abscissa is −2u and whose tangent has slope 12u2− a. The condition that the first
tangent be normal at the second point is

(12u2 − a)(3u2 − a) = −1

or
36u4 − 15u2a + (a2 + 1) = 0 .
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The discriminant of this quadratic in u2 is

225a2 − 144(a2 + 1) = 9(3a− 4)(3a + 4) .

The quadratic has positive real roots for u2 if and only if |a| ≥ 4/3.

615. The function f(x) is defined for real nonzero x, takes nonzero real values and satisfies the functional
equation

f(x) + f(y) = f(xyf(x + y)) ,

whenever xy(x + y) 6= 0. Determine all possibilities for f .

Solution. [J. Rickards] The functional equation is satisfied by f(x) = 1/x. More generally, suppose, if
possible, that there exists a number a for which f(a) = 1/b with b 6= a. Then

f(b) + f(a− b) = f(b(a− b)f(a)) = f(a− b) ,

whence f(b) = 0. But this contradicts the condition on f . Therefore there is no such a and f(x) = 1/x is
the unique solution.

616. Let T be a triangle in the plane whose vertices are lattice points (i.e., both coordinates are integers),
whose edges contain no lattice points in their interiors and whose interior contains exactly one lattice
point. Must this lattice point in the interior be the centroid of the T?

Solution 1. [M. Valkov] Let ABC be the triangle and let X be the single lattice point within its interior.
Using Pick’s Theorem that the area of a lattice triangle is (1/2)b + i − 1, where b is the number of lattice
points on the boundary and i the number in the interior, we find that [ABC] = 3/2 and [ABX] = [BCX] =
[CAX] = 1/2. Let the line through X parallel to BC meet AB at Y and AC at Z. This is line is one-third
of the distance from BC as A. Let AX meet BC at P . Then Y X : BP = AX : AP = 2 : 3.

Since X is one-third the distance from AB as C, we have that Y X : BC = 1 : 3, whence 2BP = BC
and X is on the median from A. Similarly, X is on the other two medians and so is the centroid of the
triangle.

Solution 2. [J. Schneider; J. Rickards] The answer is “yes”. Without loss of generality, we can assume
that the three points are (0, 0), (a, b) and (u, v). The area of the triangle can be computed in two ways, by
Pick’s Theorem ( 1

2b + i − 1 where b is the number of lattice points on the boundary and i the number of
lattice points in the interior of a polygon whose vertices are at lattice points) and directly using the formula
for the area of a triangle with given vertices. This yields the equation

3
2

=
1
2
|av − bu| ,

whence we deduce that av − bu ≡ 0 (mod 3).

Since there is no lattice point in the interior of the sides of the triangle, it follows that, modulo 3,
a ≡ b ≡ 0, u ≡ v ≡ 0 and a ≡ u&b ≡ v are each individually impossible. If (a, b) ≡ (0,±1), then u ≡ 0 and
v ≡ ∓1; thus, modulo 3, a + u ≡ b + v ≡ 0 and the centroid ( 1

3 (a + u), 1
3 (b + v)) is a lattice point. Since the

centroid lies inside the triangle and there is exactly one lattice point inside the triangle, the interior point
must be the centroid. A similar analysis can be made if none of the coordinates a, b, u, v are divisible by 3.
Thus, in all cases, the interior point is the centroid of the triangle.

617. Two circles are externally tangent at A and are internally tangent to a third circle Γ at points B and
C. Suppose that D is the midpoint of the chord of Γ that passses through A and is tangent there to the
two smaller given circles. Suppose, further, that the centres of the three circles are not collinear. Prove
that A is the incentre of triangle BCD.
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Solution 1. Let G denote the centre of the circle with points B and A on the circumference and H the
centre of the circle with the points C and A on the circumference. Wolog, we assume that the former circle
is the larger. Suppose that O is the centre of the circle Γ. The points G, A and H are collinear, as are B, G,
O and C, H, O. Let the chord of Γ tangent to the smaller circles meet the circumference of Γ at J and K.

We have the OD and GH are both perpendicular to JK so that GH‖OD. Let BA and OD intersect
at F . Since BG = GA and triangles BGA and BOF are similar, BO = OF and F lies on Γ. Similarly,
the point E where CA and OD intersect lies on Γ. Since 6 ABE = 6 FBE = 90◦ = 6 ADE, the points
B,E,D, A are concyclic. Therefore 6 CBF = 6 CEF = 6 AED = 6 ABD and so A lies on the bisector of
angle CBD. Similarly, A lies on the bisector of angle DCB. If follows that A is the incentre of triangle
BCD.

Solution 2. Use the same notation as in the previous solution. Wolog, let the circle with centre G be at
least as large as the circle with centre H. Suppose that the tangents to the circle Γ at B and C meet at the
point L, and that LB and LA′ are the tangents from L to the circle with centre G. Then LC = LB = LA′.
There is a unique circle ∆ that is tangent to LC and LA′ at the points C and A′. This circle is tangent also
to the circle Γ and the circle with centre G. Therefore, this circle must be the same circle with centre H, so
that LA, LB and LC are each tangent to two of the three circles. Therefore, LA = LB = LC.

Observe that, because of subtended right angles, each of the quadrilaterals LBOC, LDOB, LODC is
concyclic. We have that

6 LDC = 6 LOC = 6 LBC = 6 LCB = 6 LOB = 6 LDB ,

with the result that A lies on the bisector of angle BDC.

Let 6 ABO = β and 6 ACO = γ. Then 6 ACL = 90◦ − γ, so that 6 DLC = 2γ. Similarly, 6 DLB = 2β.
Therefore

6 BLC = 2(β + γ) =⇒ 6 BCL = 90◦ − β − γ =⇒ 6 BCA = 6 ACL− 6 BCL = β .

Because LODC is concyclic,

6 OCD = 6 OLD = 6 OLC − 6 DLC = (β + γ)− 2γ = β − γ .

Hence
6 ACD = 6 ACO + 6 OCD = γ + (β − γ) = β = 6 BCA

and A lies on the bisector of angle BCA. Therefore A is the incentre of triangle BCD.

618. Let a, b, c, m be positive integers for which abcm = 1 + a2 + b2 + c2. Show that m = 4, and that there
are actually possibilities with this value of m.

Solution. [J. Schneider] If any of a, b, c are even, then so is abcm. If a, b, c are all odd, then the right
side of the equation is even and abcm is even. Thus, abcm must be even and an even number of a, b, c are
even. If two of a, b, c are even, then the left side is congruent to 0 modulo 4 while the right is congruent to
2. Hence, it follows that all of a, b, c are odd. Therefore the right side is congruent to 4 modulo 8, and so m
must be an odd multiple of 8.

If m = 4, then we have infinitely many solutions. One solution is (m,a, b, c) = (4, 1, 1, 1). Suppose that
we are given a solution (m,a, b, c) = (4, 1, u, v). Then the equation is equivalent to v2 − 4uv + (2− u2) = 0,
i.e. v is a root of the quadratic equation

x2 − 4ux + (2− u2) = 0 .

The second root 4u−v of this quadratic equation also yields a solution: (m,a, b, c) = (4, 1, u, 4u−v). In this
way, we can find an infinite sequence of solutions of the form (m,a, b, c) = (4, 1, un, un+1) where u1 = u2 = 1
and un+1 = 4un − un−1.
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Now suppose that m ≥ 12. The equation can be rewritten

a

bc
+

b

ac
+

c

ab
+

1
abc

= m .

Wolog, let a ≤ b ≤ c. Then only the term c/ab is not less than 1, and we must have c ≥ 9ab. Since

2 < (81a2 − 1)(81b2 − 1) = 81(81a2b2 − a2 − b2) + 1 ≤ 81(c2 − a2 − b2) + 1 ,

whence c2 > a2 + b2 + 1.

Suppose that the given equation is solvable and that (m,a, b, c) is that solution which minimizes the
sum a + b + c for the given m. Since (m,a, b, x) satisfies the equation if and only if

x2 −mbcx + (a2 + b2 + 1) = 0 ,

and since c is one root of this equation, the other root yields the solution (m,a, b, (a2 + b2 + 1)/c). However,
the last entry of this is less than c and yields a solution with a smaller sum. Thus, we have a contradiction.
Therefore there are no solutions with m > 4.
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