
Solutions for May

493. Prove that there is a natural number with the following characteristics: (a) it is a multiple of 2007;
(b) the first four digits in its decimal representation are 2009; (c) the last four digits in its decimal
representation are 2009.

Solution. First, we show that there is a positive integer n for which n · 104 + 2 is a multiple of 2007.
For otherwise, if none of the numbers of the form n · 104 + 2 with n = 0, 1, 2, · · · , 2006 were a multiple of
2007, then, by the Pigeonhole Principle, there must be two of them congruent modulo 2007. Hence, their
difference, a number of the form (k − m) · 104 with 0 ≤ k, m ≤ 2006 would be a multiple of 2007, an
impossibility.

Now use this number n to compose the number M = 2009007n2009. Since

M = 2009007 · 10k + n · 104 + 2009

= 2007000 · 10k + 2007 · 10k + 2007 + (n · 104 + 2)

for 5 ≤ k ≤ 8, M is a multiple of 2007. Since it has all three of the desired characteristics, the problem is
solved.

494. (a) Find all real numbers x that satisfy the equation

(8x− 56)
√

3− x = 30x− x2 − 97 .

(b) Find all real numbers x that satisfy the equation

√
x + 3

√
x + 7 = 4

√
x + 80 .

Solution. (a) We must have x ≤ 3. The equation can be rewritten

0 = 8(x− 7)
√

3− x + x2 − 30x + 97 .

Let y be positive with y2 = 3− x. Then

0 = −8(y2 + 4)y + (y2 − 3)2 − 30(3− y2) + 97

= y4 − 8y3 + 24y2 − 32y + 16 = (y − 2)4 .

Hence y = 2, so that x = −1. This solution is valid.

(b) The domain of the equation is given by x ≥ 0. One solution is x = 1; we prove that it is the only
solution. The equation is equivalent to

x2 + 4x3/2(x + 7)1/3 + 6x(x + 7)2/3 + 4x1/2(x + 7) + (x + 7)4/3 = x + 80 .

Let
f(x) = 4x3/2(x + 7)1/3 + 6x(x + 7)2/3 + 4x1/2(x + 7) + (x + 7)4/3.

This function f(x) is increasing and f(1) = 80. If x > 1, then also x2 > x and f(x) > 80, so that
x2 + f(x) > x + 80. Similarly, when 0 ≤ x < 1, then x2 < x and f(x) < 80, so that x2 + f(x) < x + 80.
Hence, there is no solution to the equation save 1.

495. Let n ≥ 3. A regular n−gon has area S. Squares are constructed externally on its sides, and the vertices
of adjacent squares that are not vertices of the polygon are connected to form a 2n−sided polygon, whose
area is T . Prove that T ≤ 4(

√
3 + 1)S. For what values of n does equality hold?
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Solution. Wolog, let the sidelength of the given polygon be 1. The 2n−sided polygon is composed of
the regular n−gon, n squares with sidelength 1 and n isosceles triangles with equal sides of length 1 and
angle between these sides equal to

2π −
(

π

2
+

π

2
+

(n− 2)π
n

)
=

2π

n
.

Therefore
T = S + n + n · 1

2
sin

2π

n
.

On the other hand, S is the sum of the areas of n isosceles triangles, each with base 1, apex angle 2π/n and
height (1/2) cot(π/n). Hence S = (n/4) cot(π/n), so that n = 4S tan(π/n). Therefore

T = S + n + n · 1
2

sin
2π

n
= S

(
1 + 4 tan

π

n
+ 2 tan

π

n
sin

2π

n

)
.

Apply sin 2θ = 2 tan θ/(1 + tan2 θ) to sin(2π/n) to obtain that

T = S

(
1 + 4 tan

π

n
+

4 tan2 π
n

1 + tan2 π
n

)
S

(
1 + 4 tan

π

n
+

4 tan2 π
n + 4− 4

1 + tan2 π
n

)
= S

[
5 + 4

(
tan

π

n
− 1

1 + tan2 π
n

)]
.

Since n ≥ 3 and the tangent function is increasing, 0 < tan(π/n) ≤ tan(π/3) =
√

3. so that

tan
π

n
− 1

1 + tan2(π/n)
≤
√

3− 1
1 + (

√
3)2

=
√

3− 1
4

.

Therefore. T ≤ 4S(
√

3+1), as desired. Equality holds when n = 3 and the polygon is an equilateral triangle.

496. Is the hundreds digit of N = 22006 + 22007 + 22008 even or odd? Justify your answer.

Solution. Observe that

N = 22006(1 + 2 + 4) = 7 · 26 · 22000 = 7 · 26 · (220)100 .

However, modulo 100,
220 = 10242 ≡ 242 = 576 ≡ 76

and 76n ≡ 76 for each positive integer n. Hence

N = 7 · 26 · (220)100 ≡ 7 · 64 · 76 ≡ 48

(mod 100). Denote the hundreds digit of N by h. Since N is a multiple of 8, the three digit number h48
must be a multiple of 8 as well. This is possible only if h is even.

Thus, the hundreds digit of the number N is even.

497. Given n ≥ 4 points in the plane with no three collinear, construct all segments connecting two of these
points. It is known that the length of each of these segments is a positive integer. Prove that the lengths
of at least 1/6 of the segments are multiples of 3.
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Solution. First, we prove a lemma: Four points are given in the plane with no three collinear. The length
of each of the segments joining two of these points is an integer. Therefore, at least one of the segments has a
length divisible by 3. Denote the four points by A, B, C, D; wolog, assume that 6 BAD = 6 BAC + 6 CAD.
Let 6 BAC = α, 6 CAD = β and 6 BAD = γ, so that γ = α + β. Applying the Law of Cosines to triangles
ABC, ACD and ABD, we find that

BC2 = AB2 + AC2 − 2AB ·AC · cos α

CD2 = AD2 + AC2 − 2AD ·AC · cos β

and
BD2 = AB2 + AD2 − 2AB ·AD · cos γ .

Assume, if possible, that the lengths of all six segments AB, AC, AD, BC, BD, CD are not multiples of 3.
Then

AB2 ≡ AC2 ≡ AD2 ≡ BC2 ≡ BD2 ≡ CD2 ≡ 1

modulo 3, from which it follows that

2AB ·AC · cos α ≡ 2AD ·AC · cos β ≡ 2AB ·AD · cos γ ≡ 1

modulo 3. Therefore

AC2 ·AB ·AD · cos α cos β ≡ (2AB ·AC · cos α)(2AD ·AC · cos β) ≡ 1

modulo 3.

¿From the foregoing equations, each of cos α, cos β and cos γ are rational. Let cos α = p/q and cos β =
r/s, in lowest terms, where p, q, r, s are integers. None of these four integers can be multiples of 3. The
denominators q and s cannot be multiples of 3 for they must cancel into side lengths, and the numerators
p and r cannot be multiples of 3 since the terms containing the cosines are not divisible by 3. Hence
p2 ≡ q2 ≡ r2 ≡ s2 ≡ 1 (mod 3).

Since cos γ = cos α cos β − sinα sinβ, we have, from 2AB ·AD cos γ ≡ 1 and AC2 ≡ 1, modulo 3, that

2AC2 ·AB ·AD · cos γ ≡ 1 ⇐⇒

2AC2 ·AB ·AD · cos α · cos β − 2AC2 ·AB ·AD ·
√

q2 − p2

q
·
√

s2 − r2

s
≡ 1 .

The second product on the left side is a multiple of 3, so that

2AC2 ·AB ·AD · cos α cos β ≡ 1

. This contradicts an earlier statement and establishes the lemma. ♣

Let n ≥ 4. There are
(
n
4

)
sets of four points, so by the lemma, there are at least this many segments

whose lengths are multiples of 3, counting multiplicity (some counted more than once). Since each of the
segments is counted at most

(
n−2

2

)
times (for the sets of four points containing the endpoints of the segment),

it follows that there are at least
(
n
4

)
/
(
n−2

2

)
distinct segments whose lengths are multiples of 3.

Since (
n
4

)(
n−2

2

) =
2n(n− 1)(n− 2)(n− 3)

4!(n− 2)(n− 3)
=

1
6
· n(n− 1)

2
=

1
6
·
(

n

2

)
,

there are at least as many segments with lengths divisible by 3 as one-sixths of the number of pairs of
segments, and the result follows.
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498. Let a be a real parameter. Consider the simultaneous sytem of two equations:

1
x + y

+ x = a− 1 ; (1)

x

x + y
= a− 2 . (2)

(a) For what value of the parameter a does the system have exactly one solution?

(b) Let 2 < a < 3. Suppose that (x, y) satisfies the sytem. For which value of a in the stated range does
(x/y) + (y/x) reach its maximum value?

Solution. From the identification of the coefficients of a quadratic in terms of the sum and product of
the roots, we see that 1/(x + y) and x are the solutions of the quadratic equation

0 = t2 − (a− 1)t + (a− 2) = (t− a− 2)(t− 1) .

There are two options.

Option 1. 1/(x + y) = a− 2, x = 1, so that

(x, y) =
(

1,
3− a

a− 2

)
with a 6= 2.

Option 2. 1/(x + y) = 1, x = a− 2, so that

(x, y) = (a− 2, 3− a) .

(a) For the system to have exactly one solution, either the two options produce the same pair or only
one of the options is possible. In the first instance, we have a = 3 and the unique solution (x, y) = (1, 0) and
in the second, we have a = 2 and the unique solution is (x, y) = (0, 1).

(b) When 2 < a < 3, both x/y and y/x are positive for either solution of the system. By the Arithmetic-
Geometric Means Inequality,

x

y
+

y

x
≥ 2

with equality if and only if x/y = y/x. The condition for equality is equivalent to (a − 2)/(3 − a) =
(3− a)/(a− 2), or a = 5/2. Thus, (x/y) + (y/x) attains its minimum value of 2 when a = 5/2.

499. The triangle ABC has all acute angles. The bisector of angle ACB intersects AB at L. Segments
LM and LN with M ∈ AC and N ∈ BC are constructed, perpendicular to the sides AC and BC
respectively. Suppose that AN and BM intersect at P . Prove that CP is perpendicular to AB.

Solution 1. Let m be a line through C parallel to AB and let AN and BM intersect m at F and E,
respectively. Let CP and AB intersect at D. Triangles ADP and FCP are similar, as are triangles DBP
and CEP . Hence

AD : CF = PD : PC = DB : CE .

Therefor AD : BD = CF : CE.

On the other hand, triangles ABM and CEM are similar, and triangles ABN and FCN are similar.
Therefore, AM : MC = AB : CE and BN : CN = AB : CF . However, right triangles CLM and CLN are
congruent and CM = CN , so that AM : BN = CF : CE. Together with AD : BD = CF : CE, this yields
AD : BD = AM : BN and AM : AD = BN : BD.
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Let the altitude from C to AB intersects AB at a point H. Since triangles ALM and ACH are similar,
AL : AC = AM : AH. Similarly, from the similarity of triangles BLN and BCH, BL : BC = BN : BH.
By the angle-bisector theorem, AL : AC = BL : BC. It follows that AM : AH = BN : BH.

Since AM : AD = BN : BD and AM : AH = BN : BH, it follows that D and H divide AB internally
in the same ratio, and so D = H. Thus, CP ⊥ AB and the statement is established.

Solution 2. [J. Kileel] Use the same notation as in Solution 1. Let H be the foot of the perpendicular
from C to AB. It suffices to show that AN , BM and CH are concurrent. By Ceva’s Theorem, this is
equivalent to showing that

AM

MC
· CN

NB
· BH

HA
= 1 .

Triangles MCL and NCL are congruent (ASA), so that CM = CN . Triangles ALM and ACH are
similar, so that AM : HA = LM : HC. Likewise, triangles BLN and BCH are similar; therefore,

BH : NB = HC : LN = HC : LM .

It follows that
AM

MC
· CN

NB
· BH

HA
=

AM

HA
· BH

NB
· CN

MC
=

LM

HC
· HC

LM
· CN

MC
= 1 .
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