
Solutions for September

451. Let a and b be positive integers and let u = a + b and v = lcm (a, b). Prove that

gcd (u, v) = gcd (a, b) .

Solution 1. Suppose that d|a and d|b. Then d divides any multiple of these two numbers and so divides
lcm(a, b) = v. Also, d|a + b. Hence d|gcd(u, v).

On the other hand, suppose that d|u and d|v. Let g = gcd(d, a) and d = gh. We have that

v = lcm(a, b) = a · b

gcd(a, b)
.

Since d divides v, h divides d and gcd(h, a) = 1, it follows that

h

∣∣∣∣ b

gcd(a, b)
.

Now g|a + b and g|a, so g divides b = (a + b) − b. Also h|a + b and h|b, so h also divides a. But, as
gcd(h, a) = 1, h = 1. Hence d|a. Similarly, d|b. Hence the pairs (a, b) and (u, v) have the same divisors and
the result follows.

Solution 2. Let d be the greatest common divisor of a and b, and write a = da1 and b = db1. The pair
(a1, b1) is coprime. We have that u = d(a1 + b1) and v = d(a1b1). The greatest common divisor of u and v
is equal to d · gcd(a1 + b1, a1b1).

Suppose, if possible, that there is a prime p that divides both a1 + b1 and a1b1. Then p must divide one
of the factors a1, b1 of the product, say a1. Then p must also divide b1 = (a1 + b1)− a1, which contradicts
the coprimality of the pair (a1, b1). Hence gcd(a1 + b1, a1b1) = 1, and the result follows.

Solution 3. Let gcd(a, b) =
∏

pk, where the product is taken over all primes dividing the left side and
pk is the largest power of the prime dividing it. Then pk divides a and b, and hence u and v, and so divides
gcd(u, v). Hence gcd(a, b)|gcd(u, v).

Suppose that gcd(u, v) =
∏

pr. Then pr+1 divides neither a nor b and pr divides at least one of a and
b, say a. Then, as pr divides u = a + b and a, it follows that pr divides b, and therefore divides gcd(a, b).
Hence gcd(u, v)|gcd(a, b). The result follows.

452. (a) Let m be a positive integer. Show that there exists a positive integer k for which the set

{k + 1, k + 2, . . . , 2k}

contains exactly m numbers whose binary representation has exactly three digits equal to 1.

(b) Determine all intgers m for which there is exactly one such integer k.

Solution 1. (a) For each positive integer k, let f(k) be the number of integers in the set

{k + 1, k + 2, . . . , 2k}

whose binary representation has exactly three digits equal to 1. When we move from k − 1 to k, the set
corresponding to k− 1 drops the number k and adds the numbers 2k− 1 and 2k to for the set correponding
to k. Since k and 2k have exactly the same number of ones in their binary representations, we find that, for
k ≥ 2,

f(k) = f(k − 1)
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when 2k − 1 does not have three digits equal to one, and

f(k) = f(k − 1) + 1

when 2k − 1 has exactly three digits equal to one (i.e., has the form 2a + 2b + 2c for distinct nonnegative
integers a, b, c. There are infinitely many numbers of this form.

Hence f(k) increases by 0 or 1 with every unit increase in k and takes arbitrarily large value. Since
f(1) = 0, the function f assumes every nonnegative integer.

(b) Suppose that f(k) assumes some value m exactly once. Then, there must be a positive integer r for
which f(r − 1) = m − 1, f(r) = m and f(r + 1) = m + 1, so that 2r − 1 = 2t + 2s + 1 for some positive
integers t and s with t > s > 0 (so t ≥ 2) and the binary representation of 2r + 1 = 2t + 2s + 2 + 1 has
exactly three digits equal to 1. This can happen only of s = 1, so that 2r − 1 = 2t + 3, 2r + 1 = 2t + 5 and
r = 2t−1 + 2.

We count the number of integers with three unit binary digits in

{2t−1 + 2 + 1, 2t−1 + 22, · · · , 2t, 2t + 1, 2t + 2, 2t + 2 + 1, 2t + 22} .

This set includes all the numbers with exactly t digits, except for 2t−1 and 2t−1 + 1, neither of which has
three unit digits, and exactly

(
t−1
2

)
of them have three unit digits (corresponding to all possible choices of

pairs of digit positions). There is one additional number 2t + 2 + 1 with three digits. Hence f(k) assumes
the value m exactly once if and only if m has the form 1 +

(
n
2

)
and k = 2n + 2.

Solution 2. (a) [A. Remorov] Let k = 2a + 2b + 1, where a > b ≥ 1. There are
(
a
2

)
numbers with exactly

three unit binary digits between 2a and 2a+1 inclusive, since there are a positions in which to place the last
two unit digits. There are

(
b
2

)
numbers between 2a and 2a +2b inclusive, since there are b positions available

for the last two unit digits. Thus there are
(
a
2

)
−

(
b
2

)
numbers with three unit digits between 2a + 2b and

2a+1 − 1 inclusive, and so (
a

2

)
−

(
b

2

)
− 1

numbers with three unit digits between k+1 = 2a +2b +2 and 2a+1−1 inclusive (the number k = 2a +2b +1
is not included).

There are
(
b+1
2

)
+ 2 numbers with three unit digits between 2a+1 and 2k = 2a+1 + 2b+1 + 2 inclusive,

since the last two ones can be chosen arbitrarily from the last b + 1 digits and since 2k − 1 and 2k are also
included. Hence the number of digits between k+1 and 2k inclusive is equal to

(
a
2

)
+b+1. Since b can be any

integer for which 1 ≤ b ≤ a − 1, the set of numbers m for which there are exactly m numbers with exactly
three unit digits between k +1 and 2k inclusive contain all the numbers between

(
a
2

)
+2 and

(
a
2

)
+a =

(
a+1
2

)
for a ≥ 2 (i.e., 3, 5, 6, 8, 9, 10, · · ·).

There is one such integer when k = 4 and two such integers when k = 6. When a ≥ 2 and k = 2a + 3,
there are

(
a
2

)
− 1 such integers between 2a + 4 and 2a+1 − 1 inclusive and also 2 more, 2a+1 + 3 and 2a+1 + 6

for a total of
(
a
2

)
+ 1 between k + 1 and 2k inclusive. Hence, all values of m can be assumed.

Solution 3. [D. Shi] Let xm be the mth binary number that contains exactly two digits equal to 1 (so
that x1 = 3, x2 = 5, x3 = 6, x4 = 9). We prove that {xm + 1, xm + 2, · · · , 2xm} contains exactly m − 1
numbers with exactly three unit binary digits.

First, note that there are exactly n− 1 binary numbers with n digits with exactly two unit digits (the
left digit and one other). Suppose that 1 + 2 + · · ·+ (n− 1) < m ≤ 1 + 2 + · · ·+ n, so that m =

(
n
2

)
+ r for

1 ≤ r ≤ n. Then xm has n + 1 binary digits and so xm = 2n + 2r−1. In the set {xm + 1, · · · , 2xm}, there are
(r− 1) + r + · · ·+ (n− 1) =

(
n
2

)
−

(
r−1
2

)
numbers of the form 2n + 2a + 2b with a ≥ r− 1, a > b ≥ 0 and

(
r
2

)
numbers of the form 2n+1 + 2a + 2b with r − 1 ≥ a > b ≥ 0. Hence there are(

n

r

)
−

(
r − 1

2

)
+

(
r

1

)
=

(
n

r

)
− (r − 1) = m− 1
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numbers in {xm+1, · · · , 2xm} with three unit digits.

The number m of numbers being an increasing function of k, the number m− 1 is unique if and only if
xm+1 = xm + 1. This occurs if r is chosen so that xm = 2n + 2r−1 + 1 has two digits equal to 1, which is
equivalent to r = 1. Hence, the numbers m which occur exactly once are of the form

(
n
2

)
+ 1 for n ≥ 2.

453. Let A, B be two points on a circle, and let AP and BQ be two rays of equal length that are tangent
to the circle that are directed counterclockwise from their tangency points. Prove that the line AB
intersects the segment PQ at its midpoint.

Solution 1. [D. Dziabenko, Y. Wang] If A and B are at opposite ends of a diameter, then AP and BQ
are mutual images with respect to a reflection in the centre of the circle and AB bisects PQ at the centre of
the circle. Otherwise, wolog, we may suppose that the arc from A to B is less than a semicircle.

Let the lines AP and BQ meet at C and suppose that PA is produced to D so that DP = 2AP . Since
(in triangle CDQ), DA : AC = AP : AC = BQ : CB, AB‖DQ. Suppose that AB meets PQ at K. Then
(in triangle PDQ), AK‖DQ, so that PA : AD = PK : KQ. Since PA = AD, PK = KQ as desired.

Solution 2. [K. Huynh] The rotation with centre O, the centre of circle, that takes A to B also takes
P to Q. Let β = 6 AOP . Consider the spiral similarity of a rotation about O with angle β followed by a
dilation of factor |OP |/|OA|. This takes triangle OAB to triangle OPQ and takes the midpoint M of AB
to the midpoint N of PQ. Our task is to show that A, B and N are collinear.

Since OP : OA = ON : OM and 6 AOP = 6 MON = β, triangles OAP and OMN are similar. Hence
6 OMN = 6 OAP = 90◦. Since triangle OAB is isosceles, OM ⊥ AB, so that 6 OMB = 90◦ = 6 OMN .
Hence A,M,B,N are collinear and the lines AB meets the segment PQ at its midpoint.

Solution 3. [P. Chu] Suppose that AB and PQ intersect at M , and that OP and AM intersect at X. We
have that ∆OAP ∼ ∆OBQ and ∆OAB ∼ ∆OPQ. Since 6 OAB = 6 OPQ and 6 OXA = 6 MXP , triangles
OAX and MPX are similar, and so AX : OX = PX : MX. Since, also, 6 AXP = 6 OXM , triangles AXP
and OXM are similar. Now,

6 MOP + 6 MPO = 6 MOX + 6 QPO = 6 XAP + 6 BAO = 90◦

whence 6 OMP = 90◦. Since OP = OQ, triangle POQ is isosceles and its altitude OM bisects the base PQ.
The result follows.

Solution 4. Let N be the midpoint of PQ. The half-turn (180◦ rotation) about N interchanges P and
Q and takes A to A′, so that N is the midpoint of AA′. We show that B lies on AA′.

Let O be the centre of the circle and let 6 AOB = 2α. The rotation with centre O that takes A to B
also takes P to Q, so that the angle between AP and BQ is equal to 2α. Since AP is carried to A′Q by the
half-turn about N , the angle formed by BQ and QA′ at Q is equal to 2α. This is an exterior angle to the
triangle BQA′.

Since BQ = PA = PA′, triangle BQA′ is isosceles and so 6 BA′Q = 6 QBA′. Hence

6 NAP = 6 A′AP = 6 AA′Q = 6 BA′Q =
1
2
(6 BA′Q + 6 QBA′) = α .

However, 6 BAP is equal to the angle between chord and tangent and so equal to half the angle subtended
by the chord at the centre O. Hence 6 BAP = α = 6 NAP , so that A,B,N are collinear and the result
follows.

Solution 5. [C. Sun] Let AB intersect PQ at M . Note that triangle OAB and OPQ are similar isosceles
triangles.

6 MBO = 180◦ − 6 ABO = 180◦ − (90◦ − 1
2
6 AOB)

= 180◦ − (90◦ − 1
2
6 POQ) = 180◦ − 6 PQO

= 180◦ − 6 MQO .
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Hence 6 MBO + 6 MQO = 180◦, so that the quadrilateral OBMQ is concyclic. Therefore 6 OMQ =
6 OBQ = 90◦, from which OM ⊥ PQ. Because triangle OPQ is isosceles, M is the midpoint of PQ, as
desired.

454. Let ABC be a non-isosceles triangle with circumcentre O, incentre I and orthocentre H. Prove that
the angle OIH exceeds 90◦.

Solution 1. Suppose that 6 A > 90◦. Then O and H are both external to the triangle on opposite sides
of BC. The points O and H are opposite vertices of a rectangle, two of whose sides are the altitude from A
to BC and the right bisector of BC. Since the angle bisector of angle BAC lies between these sides within
triangle ABC [why?], I lies inside the rectangle and within the circle of diameter OH. Hence 6 OIH > 90◦.
If 6 A = 90◦, then O is the midpoint of BC and H = A. he same argument can be used (noting that I is
not on OH since the triangle is not isosceles).

Suppose that ABC is an acute triangle with AB < AC < BC. Let the altitudes be AP , BQ, CR and
the medians AL, BM , CN . We have that AR < AN , BP < BL, AQ < AM . Hence H lies inside the
quadrilateral AMON . Since 6 RHP > 90◦, 6 PHC < 90◦. The parallelogram with sides AP , OL, CR, ON
has an acute angle at H and O and so is contained in the circle with diameter HO.

Since AB < AC, 6 BAP < 6 CAP and 6 BAL > 6 CAL, so that the bisector AI of the angle A lies
between AP and AL. Similarly, CI lies between CR and CN . Thus I lies within the parallelogram with
sides AP , OL, CR, ON and so is contained within the circle of diameter OH. Hence 6 OIH > 90◦.

Solution 2. Recall some preliminary facts. The nine-point circle of a triangle ABC passes through the
midpoints of the sides, the midpoints of the segments joining its vertices to the orthocentre H and the pedal
points (i.e., the feet of its altitudes to the sides). Its centre is the midpoint N of the segment joining the the
circumcentre O and the orthocentre H of the triangle. Its radius 1

2R is equal to half the circumradius R of
the triangle ABC and it touches internally the incircle with radius r (as well as all three excircles). (See the
book, H.S.M. Coxeter & S.L. Greitzer, Geometry revisited, MAA, 1967, §1.8, 5.6). The square of the length
of the segment OI is |OI|2 = R2 − 2Rr = R(R− 2r) (ibid, §2.1)

[Y. Wang] Produce OI to M so that OI = IM , and let R and r be be the circumradius and inradius,
respectively. Consider triangle OHM . Since N is the midpoint of OH and I is the midpoint of OM ,
NI‖HM so that |HM | = 2|NI| = R − 2r. Since |IM | = |OI| =

√
R(R− 2r) and

√
R(R− 2r) > R − 2r,

|IM | > |HM , so that 6 IHM > 6 MIH. Hence 6 MIH < 90◦ so that 6 OIH > 90◦.

Solution 3. [D. Dziabenko] See background information in Solution 2. The centre N of the nine-point
circle is the midpoint of OH, so that −→IH = 2−→IN −−→

IO. Since

−→
IN · −→IO = |−→IN ||−→IO| cos 6 OIN =

1
2
(R− 2r)

√
R2 − 2Rr cos 6 OIN ,

it follows that

|−→IH||−→IO| cos 6 OIH = −→
IH · −→IO = (2−→IN −−→

IO · −→IO)

= 2(−→IN · −→IO)− |IO|2

= (R− 2r)(
√

R2 − 2Rr) cos 6 OIN − (R2 − 2Rr)

≤ (R− 2r)
√

R2 − 2Rr − (R− 2r)R = (R− 2r)[
√

R2 − 2Rr −R] < 0 .

Hence cos 6 OIH < 0 and so 6 OIH > 90◦.

455. Let ABCDE be a pentagon for which the position of the base AB and the lengths of the five sides are
fixed. Find the locus of the point D for all such pentagons for which the angles at C and E are equal.

Solution 1. [C. Bao] We use analytic geometry, with the assignment A ∼ (0, 0), B ∼ (1, 0), C ∼ (a, b),
D ∼ (x, y) and E ∼ (c, d). The lengths of the sides are |AB| = 1, |BC| = u, |CD| = v, |DE| = w and
|EA| = t. We have that u2 = (a−1)2 + b2, v2 = (x−a)2 +(y− b)2, w2 = (x− c)2 +(y−d)2 and t2 = c2 +d2.
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Now −−→
CB · −−→CD = (a− 1, b) · (a− x, b− y) = (a− 1)(a− x) + b(b− y)

= a2 + b2 − ax− by + x− a

=
1
2
[(a− 1)2 + b2 + (x− a)2 + (b− y)2 − (x− 1)2 − y2]

=
1
2
[u2 + v2 − (x− 1)2 − y2] ,

so that

cos C =
u2 + v2 − [(x− 1)2 + y2]

2uv
.

Similarly,

cos E =
w2 + t2 − (x2 + y2)

2wt
.

Hence
(u2 + v2)wt− [(x− 1)2 + y2]wt = (w2 + t2)uv − [x2 + y2]uv

so that
(uv − wt)[x2 + y2] + 2wtx + [(u2 + v2 − 1)wt− (w2 + t2)uv] = 0 .

Thus, the point C ∼ (x, y) lies on a circle when uv − wt 6= 0 and on a straight line perpendicular to AB
when uv = wt.

456. Let n + 1 cups, labelled in order with the numbers 0, 1, 2, · · · , n, be given. Suppose that n + 1 tokens,
one bearing each of the numbers 0, 1, 2, · · · , n are distributed randomly into the cups, so that each cup
contains exactly one token.

We perform a sequence of moves. At each move, determine the smallest number k for which the cup
with label k has a token with label m not equal to k. Necessarily, k < m. Remove this token; move all
the tokens in cups labelled k + 1, k + 2, · · · ,m to the respective cups labelled k, k + 1,m − 1; drop the
token with label m into the cup with label m. Repeat.

Prove that the process terminates with each token in its own cup (token k in cup k for each k) in not
more that 2n − 1 moves. Determine when it takes exactly 2n − 1 moves.

Solution. Let (x0, x1, x2, · · · , xn) denote the arrangement of tokens in which token number xi is placed
in cup i. When n = 0, token 0 is in cup 0, and 0 = 20 − 1 moves are required. When n = 1, there are two
possible distributions of tokens, and at most 1 = 21 − 1 moves is needed, with this number required in the
case of (1, 0). We will establish the result by an induction argument.

First, observe that, for any arrangement (x0, x1, · · · , xi, · · · , xn), any token either remains stationary or
moves one cup to the left at each move until it reaches the leftmost cup to the right of tokens already in
their cups. Also, note that the number of moves required to first take token xi to the position from which
it first moves to its own cup depends only on the tokens x0, · · · , xi−1 to the left of it. This can be seen by
induction on i. This is clear for i = 1, since either x0 will move and x1 goes to cup 0, or x0 = 0 and x1 will
move to its own cup. Suppose that this is true for i = j− 1 ≥ 1. Then, if (x0, x1, · · · , xj−1) is a permutation
of 0, 1, · · · , j − 1), then xj will remain in position until its left neighbours are sorted, and then will move.
Otherwise, xj will move one position to the left on the first occasion when on of the tokens on the left is
moved to the right of it. Since this token is now in cup j − 1, we can apply the induction hypothesis.

Back to the given problem, we suppose as an induction hypothesis that, for n = k, at most 2k − 1
moves are required, and this this number of moves is necessary if and only if the initial arrangement is
(1, 2, 3, · · · , k, 0).

Consider an initial arrangement (x0, x1, · · · , xk, xk+1) in the case n = k + 1. If xk+1 = k + 1, then
this token will never be moved and by the induction hypothesis, the remaining tokens will be put into their
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proper cups in at most 2k − 1 < 2k+1− 1 moves. Suppose that xi = k +1 for 0 ≤ i ≤ k. Consider two initial
arrangements:

A = (x0, x1, · · · , xi−1, xi = k + 1, xi+1, · · · , xk+1)

and
B = (x0, x1, · · · , xi−1, xi+1, · · · , xk+1) ,

where B has k + 1 tokens numbered from 0 to k inclusive sorted into k + 1 cups. The number of moves
required to move xi in arrangement A to a position from which it moves to its own cup is equal to the
number of moves to move xi+1 in arrangement B to a similar position, namely, no more than 2k − 1. This
number of moves is actually equal to 2k − 1 if and only if B = (1, 2, · · · , k, 0) and A = (1, 2, · · · , k, k + 1, 0)
(i.e., i = k).

Thus, after at most 2k − 1 moves, we have an arrangement with token k + 1 in cup 0. One additional
move takes this token to cup k+1 and the rest all in the left cups. Finally, at most 2k−1 moves are required
to restore the remaining tokens to their proper cups. Thus, we make at most (2k−1)+1+(2k−1) = 2k+1−1
moves. This maximum is attained only if we begin with (1, 2, · · · , k, k + 1, 0). The first 2k − 1 moves take
us to (k + 1, 1, 2, · · · , k, 0); the next move yields (1, 2, · · · , k, 0, k + 1) and the final 2k − 1 moves takes us to
(0, 1, 2, · · · , k, k + 1).

457. Suppose that u1 > u2 > u3 > · · · and that there are infinitely many indices n for which un ≥ 1/n.
Prove that there exists a positive integer N for which

u1 + u2 + u3 + · · ·+ uN > 2006 .

Solution. Since there are infinitely many values of n for which un ≥ 1/n, we can select positive integers
ni such that ni+1 > 2ni for i = 1, 2, 3, · · ·. Then

ni+1∑
n=ni+1

un ≥
ni+1∑

n=ni+1

uni+1 ≥
ni+1 − ni

ni+1
>

1
2

for i ≥ 1. Let N = n4013. Then

N∑
n=1

un ≥
n4013∑

n=n1+1

un > (4012)(1/2) = 2006 .
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