
Solutions for November

465. For what positive real numbers a is
3
√

2 +
√

a + 3
√

2−
√

a

an integer?

Solution 1. Let x = 3
√

2 +
√

a, y = 3
√

2−
√

a and z = x + y. Then

z3 = (x + y)3 = x3 + y3 + 3(4− a)1/3z = 4 + 3(4− a)1/3z .

Hence 27(4− a)z3 = (z3 − 4)3, whence

a = 4− (z3 − 4)3

27z3
=

108z3 − (z3 − 4)3

27z3
.

Since a ≥ 0, z must be either (1) a positive integer for which 108z3 ≥ (z3 − 4)3, or (2) a negative integer for
which 108z3 ≤ (z3 − 4)3.

Condition (1) forces 108 ≥ (z2 − (4/z))3 ≥ (z2 − 4)3, so that z = 1, 2. Condition (2) forces 108 ≥
(z2 − (4/z))3 ≥ z6, which is satisfied by no negative integer value of z. Hence, we must have that (z, a) =
(1, 5), (2, 100/27). Since z = x + y is equivalent to z3 = 4 + 3(4− a)1/3z, it is straightforward to check that
both these answers are correct. Hence a = 5 or a = 100/27.

Solution 2. [Yifan Wang] With x and y defined as in the first solution, note that x > y and that
x3 + y3 = (x + y)(x2 − xy + y2). Since x2 + y2 > (x + y)2/2 and −xy > −(x + y)2/4, we have that
4 > (x+ y)3/4, whence x+ y ≤ 2. Since x3 > −y3, x > −y, so that x+ y > 0. Hence x+ y = 1 or x+ y = 2.

When x + y = 1, x2 − xy + y2 = 4 and so xy = −1, and x = 1
2 (1 +

√
5), y = 1

2 (1 −
√

5). Therefore
4− a = x3y3 = −1 so that a = 5.

When x + y = 2, then x2 − xy + y2 = 2, so that xy = 2/3. Therefore x = 1
3 (3 +

√
3), y = 1

3 (3 −
√

3)
and 4− a = 8/27. Thus, a = 100/27. These solutions check out.

Solution 3. [A. Tavakoli] Denote the left side of the equation by f(a). When a ≥ 4,

0 ≤ f(a) = (
√

a + 2)1/3 − (
√

a− 2)1/3 =
4

(
√

a + 2)2/3 + (a− 4)1/3 + (
√

a− 2)2/3
≤ 41/3 < 3 .

Let 0 ≤ a ≤ 4; again f(a) > 0. Observe that

(
1
2
(u + v)

) 1
3

≥ 1
2
u

1
3 +

1
2
v

1
3

for all nonnegative values of u and v. (This can be seen by using the concavity of the function t1/3, or from
the power-mean inequality (1/2)(s + t) ≤ [(1/2)(s3 + t3)]1/3.) Setting u = 3

√
2 +

√
a and v = 3

√
2−

√
a, we

find that 3 > 2× 21/3 ≥ f(a) > 0 with equality if and only if a = 0. Hence the only possible integer values
of f(a) are 0 and 1.

Let x = 3
√

2−
√

a, so that 2 +
√

a = 4− x3. Then

f(a) = 1 ⇐⇒ x + (4− x3)1/3 = 1

⇐⇒ 4− x3 = 1− 3x + 3x2 − x3

⇐⇒ x2 − x− 1 = 0 ⇐⇒ x = (1±
√

5)/2

⇐⇒ x3 = 2±
√

5 .
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The larger root of the quadratic leads to x3 > 2 and so is extraneous. Hence x3 = 2−
√

5, and so
√

a =
√

5,
a = 5.

f(a) = 2 ⇐⇒ x + (4− x3)1/3 = 2

⇐⇒ 4− x3 = (2− x)3 = 8− 12x + 6x2 − x3

⇐⇒ 3x2 − 6x + 2 = 0 ⇐⇒ x =
3±

√
3

3
. .

Now, (
3±

√
3

3

)3

= 2± 10
√

3
9

.

The larger value of x leads to x3 > 2, and so is inadmissible. The smaller value of x leads to x3 = 2−(10
√

3/9)
and

√
a = (10

√
3/9), a = 100/27. Both values of a check out.

466. For a positive integer m, let m denote the sum of the digits of m. Find all pairs of positive integers
(m,n) with m < n for which (m)2 = n and (n)2 = m.

Solution. Let m = mk · · ·m1m0 where 0 ≤ mi ≤ 9 are the digits of m. Then

10k ≤ m < n = (mk + · · ·+ m0)2 ≤ [(k + 1)10]2 ,

whence 10k−2 ≤ (k + 1)2 and 0 ≤ k ≤ 3.

Hence m < n = (m3 + m2 + m1 + m0)2 ≤ (4× 9)2 = 362. Since m and n are both perfect squares, we
need only consider m = r2, where 1 ≤ r ≤ 36.

In the case that k = 3, m < 1 + 9 + 9 + 9 = 28. Since 282 < 1000 < m < n, there are no examples. In
the case that k = 2, m < 6 + 9 + 9 = 24 and so n2 ≤ 242. The only possibility is (m,n) = (169, 256). There
are no possibilities when k = 0 or k = 1.

Hence, the only number pair is (m,n) = (169, 256).

Comment. This is problem 621 from The College Mathematics Journal.

467. For which positive integers n does there exist a set of n distinct positive integers such that

(a) each member of the set divides the sum of all members of the set, and

(b) none of its proper subsets with two or more elements satisfies the condition in (a)?

Solution. When n = 1, condition (b) is satisfied vacuously, and any singleton will do. When n = 2,
such a set cannot be found. If a and b are any two positive integers, then condition (b) entails that both a
and b divide a + b, and so must divide each other. This cannot happen when a and b are distinct.

When n ≥ 3, a set of the required type can be found. For example, let

Sn = {1, 2, 2× 3, 2× 32, · · · 2× 3n−3, 3n−2 .

The sum of the elements in Sn is 2× 3n−2, which is divisible by each member of Sn.

Consider any proper subset R of Sn with at least three numbers. If 3n−2 belongs to R, then the sum of
the elements of R must be strictly between 3n−2 and 2× 3n−2, and so not divisible by 3n−2. If R does not
contain 3n−2, then its largest entry has the form 2 × 3k with 1 ≤ k ≤ n − 3. Then the sum of R is greater
than 2× 3k and does not exceed 1 + 2(1 + 3 + · · ·+ 3k) = 3k+1 < 2(2× 3k). Hence this sum is not divisible
by 2× 3k. As we have seen, no doubleton satisfies the condition. Hence (b) is satisfied for all subsets of Sn.

Comment. This is problem 1504 in the October, 1996 issue of Mathematics Magazine.
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468. Let a and b be positive real numbers satisfying a + b ≥ (a− b)2. Prove that

xa(1− x)b + xb(1− x)a ≤ 1
2a+b−1

for 0 ≤ x ≤ 1, with equality if and only if x = 1
2 .

Comment. Denote the left side by f(x). When a = b, f(x) = 2xa(1 − x)a, which is maximized when
x = 1/2, its maximum value being 2 × 4−a. In the general case, the solution can be obtained by calculus.
Since f(0) = f(1) = 0 and the function possesses a derivative everywhere, the maximum occurs when
f ′(x) = 0 and 0 < x < 1. Wolog, assume that a < b. We have that

f ′(x) = xa−1(1− x)a−1[(a− (a + b)x)(1− x)b−a + (b− (a + b)x)xb−a] .

This solution can be found in Mathematics Magazine 70:4 (October, 1997), 301-302 (Problem 1505), and
is fairly technical. It would be nice to have a more transparent argument. Is there a solution that avoids
calculus, at least for rational a and b?

A second solution, employs the substitution 2x = 1− y to get the equivalent inequality

(1− y)a(1 + y)b + (1− y)b(1 + y)a ≤ 2

for |y| ≤ 1. Wolog, we can let a = b + c with c ≥ 0. Then the condition becomes 2b ≥ c2 − c. Then the
inequality is equivalent to

(1− y2)b[(1− y)c + (1 + y)c] ≤ 2 ,

for |y| ≤ 1.

Let 0 ≤ c ≤ 1. Then, for t > 0, the function tc is concave, so that, for u, v > 0,(
u + v

2

)c

≥ uc + vc

2
.

Setting (u, v) = (1 − y, 1 + y), we find that (1 − y)c + (1 + y)c ≤ 2 for |y| ≤ 1. Hence the inequality holds,
with equality occurring when y = 0 (x = 1/2).

When c > 1, I do not have a clean solution. First, it suffices to consider the inequality when b is replaced
by 1

2 (c2 − c). Thus, we need to establish that

(1− y2)(1/2)(c2−c)[(1− y)c + (1− y)c] ≤ 2 (∗)

for |y| ≤ 1. The derivative of the natural logarithm of the left side is a positive multiple of

g(y) = (1 + y)c(1− cy)− (1− y)c(1 + cy) .

If this can be shown to be nonpositive, then the result will follow. An equivalent inequality is(
1− 2y

1 + y

)2

=
(

1− y

1 + y

)c

≥
(

1− cy

1 + cy

)
=

(
1− 2cy

1 + cy

)
,

for c > 1 and |y| ≤ 1.

469. Solve for t in terms of a, b in the equation√
t3 + a3

t + a
+

√
t3 + b3

t + b
=

√
a3 − b3

a− b
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where 0 < a < b.

Solution 1. The equation is equivalent to√
t2 − at + a2 +

√
t2 − bt + b2 =

√
a2 + ab + b2 .

Square both sides of the equation, collect the nonradical terms on one side and the radical on the other and
square again. Once the polynomials are expanded and like terms collected, we obtain the equation

0 = t2(a + b)2 − 2ab(a + b)t + a2b2 = [t(a + b)− ab]2 ,

whence t = ab/(a + b). This can be checked by substituting it into the equation.

Solution 2. [Y. Wang] As in solution 1, we can find an equivalent equation, which can then be manipu-
lated to√

(t− (a/2))2 + (
√

3a/2)2 +
√

(t− (b/2))2 + (−
√

3b/2)2 =
√

(a/2− b/2)2 + (
√

3a/2 +
√

3b/2) .

If we consider the points A ∼ (a/2,
√

3a/2), B ∼ (b/2,−
√

3b/2) and T ∼ (t, 0), then we can interpret this
equation as stating that AT + BT = AB. By the triangle inequality, we see that T must lie on AB, so that
the slopes of AT and BT are equal. Thus

√
3a

a− 2t
=

√
3b

2t− b
,

whence t = ab/(a + b).

470. Let ABC, ACP and BCQ be nonoverlapping triangles in the plane with angles CAP and CBQ right.
Let M be the foot of the perpendicular from C to AB. Prove that lines AQ, BP and CM are concurrent
if and only if 6 BCQ = 6 ACP .

Solution 1. [A. Tavakoli] Let BP and AQ intersect at K. Let 6 BCQ = α, 6 ACP = β and 6 BCA = γ.
By the trigonometric form of Ceva’s theorem, CM , AP and BQ are concurrent if and only if

sin 6 BCM

sin 6 ACM
· sin 6 KAC

sin 6 KAB
· sin 6 KBA

sin 6 KBC
= 1 . (1)

This holds whether K lies inside or outside of the triangle.

We have that sin 6 BCM = cos 6 CBA, sin 6 ACM = cos 6 CAB, and, by the Law of Sines applied to
triangles ACQ and ABQ,

sin 6 KAC = sin 6 QAC = (sin 6 ACQ)(|QC|)/(|AQ|) ,

and
sin 6 KAB = sin 6 QAB = (sin 6 ABQ)(|QB|)/(|AQ|) .

Therefore

sin 6 KAC

sin 6 KAB
=

(
sin 6 ACQ

sin 6 ABQ

)
·
(
|QC|
|QB|

)
=

(
sin(γ + α)

sin(6 ABC + 90◦)

)
·
(

1
sinα

)
=

− sin(γ + α)
(cos 6 CBA) sinα

.

Similarly,
sin 6 KBA = sin 6 BAP (|AP |/|BP |)

sin 6 KBC = sin 6 BCP (|PC|/|BP |)
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and so
sin 6 KBA

sin 6 KBC
=

sin(6 BAC + 90◦)
sin(β + γ)

· |AP |
|PC|

=
− cos(6 BAC) sinβ

sin(β + γ)
.

Hence the condition for concurrency becomes

sin(γ + α)
sinα

· sinβ

sin(γ + β)
= 1

⇐⇒ sin γ cot α + cos γ = sin γ cot β + cos γ

⇐⇒ cot α = cotβ ⇐⇒ 6 BCQ = α = β = 6 ACP .

This is the required result.

Solution 2. We do some preliminary work. Suppose that PB and AQ intersect at O, and that X and
Y are the respective feet of the perpendiculars from C to PB and AQ. Since 6 CXP = 6 CAP = 90◦,
CAXP is concyclic and so 6 ACP = 6 AXP . Similarly CQBY is concyclic and so 6 BCQ = 6 BY Q. Since
6 CXO = 6 CY O = 90◦, X and Y lie on the circle with diameter CO. Hence 6 Y CO = 6 Y XO = 6 Y XB.

Now suppose that 6 BCQ = 6 ACP . Let CO produced meet AB at N . Since 6 AXP = 6 ACP =
6 BCQ = 6 BY Q, it follows that 6 AXB = 6 AY B so that BY XA is concyclic and so 6 Y XB = 6 Y AB.
Therefore

6 Y CN = 6 Y CO = 6 Y XB = 6 Y AB = 6 Y AN

and ANY C is concyclic/ Hence 6 CNA = 6 CY A = 90◦ and N must coincide with M .

On the other hand, let CM pass through O. Since 6 CY A = 6 CMA = 90◦, AMY C is concyclic so that

6 Y AB = 6 Y AM = 6 Y CM = 6 Y CO = 6 Y XB .

Therefore BAXY is concyclic and 6 BXA = 6 BY A ⇒ 6 AXP = 6 BY Q. Since CAXP and CY BQ are
concyclic, 6 ACP = 6 AXP = 6 BY Q = 6 BCQ.

471. Let I and O denote the incentre and the circumcentre, respectively, of triangle ABC. Assume that
triangle ABC is not equilateral. Prove that 6 AIO ≤ 90◦ if and only if 2BC ≤ AB + CA, with equality
holding only simultaneously.

Solution 1. Wolog, let AB ≥ AC. Suppose that the circumcircle of triangle ABC intersects AI in D.
Construct the circle Γ with centre D that passes through B and C. By the symmetry of AB and AC in the
angle bisector AD, this circle intersects segment AB in a point F such that AF = AC. Let Γ intersect AD
at P . Then chords CP and FP have the same length. If AB > AC, this implies that P is on the angle
bisector of angle ABC. If AB = AC, then 6 ABC = 6 ADC = 6 PDC = 26 PBC. In either case, P = I.

Let E be on the ray BA produced such that AE = AC. Since 6 DAC = 1
2
6 BAC = 6 AEC and

6 ADC = 6 ABC = 6 EBC, triangles ADC and EBC are similar, and so

ID : AD = CD : AD = BC : BE = BC : (AB + AC) .

But 6 AIO ≤ 90◦ if and only if ID/AD ≤ 1/2, and so is equivalent to 2BC ≤ AB + AC, with equality
holding only simultaneously. (Solution due to Wu Wei Chao in China.)

Solution 2. We have that 6 AIO ≤ 90◦ if and only if cos 6 AIO ≥ 0, if and only if |AO|2 ≤ |OI|2 + |IA|2.
Let a, b, c be the respective sidelengths of BC, CA, AB; let R be the circumradius and let r be the inradius of
triangle ABC. Since, by Euler’s formula, |OI|2 = R2 − 2Rr, and r = |IA| sin(A/2), the foregoing inequality
is equivalent to

2R ≤ r

sin2(A/2)
=

2r

1− cos A
.
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Applying R = a/(2 sinA), r = bc sinA/(a + b + c) and 2bc cos A = b2 + c2 − a2, we find that

r −R(1− cos A) =
bc sinA

a + b + c
− a(1− cos A)

2 sinA

= sinA

[
bc

a + b + c
− a(1− cos A)

2 sin2 A

]
sinA

2(1 + cos A)(a + b + c)
[2bc + 2bc cos A− a(a + b + c)]

sinA

2(1 + cos A)(a + b + c)
[2bc + b2 + c2 − a2 − a(a + b + c)]

sinA

2(1 + cos A)(a + b + c)
[(b + c)2 − 2a2 − a(b + c)]

sinA

2(1 + cos A)(a + b + c)
[(b + c + a)(b + c− 2a)] .

Hence the inequality R(1− cos A) ≤ r is equivalent to 2a ≤ b + c. The desired result follows. (Solution due
to Can A. Minh, USA)

Solution 3. [Y. Wang] Let AI intersect the circumcircle of triangle ABC at D. Since AI bisects the
angle BAC and the arc BC, we have that BD = BC. Also,

6 DIC = 6 CAD + 6 ACI = 6 BCD + 6 BCI = 6 DCI ,

whence DC = DI = DB. Using Ptolemy’s Theorem, we have that

AB × CD + BD ×AC = AD ×BC ,

so that
AB ×DI + DI ×AC = (AI + ID)×BC .

Hence
k ≡ AB + AC

BC
= 1 +

AI

ID
.

If AB = AC, then A,O, I are collinear. Let k < 2; then AI < ID and I lies between A and O and
6 AIO = 180◦. Let k > 2; then AI > ID, O lies between A and I and 6 AIO = 0◦. [If k = 2, then AI = ID,
the incentre and circumcentre coincide and the triangle is equilateral – the excluded case.]

Wolog, suppose that AB > AC. Then the circumcentre O lies within the triangle ABD. Let P be the
foot of the perpendicular from O to AD. Then P is the midpoint of AD and the angle AIO is greater than,
equal to or less than 90◦ according as I is in the segment AP , coincides with P or is in the segment PD.
These correspond to k < 2, k = 2 and k > 2, and the result follows.
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