Solutions for November

465. For what positive real numbers a is

$$
\sqrt[3]{2+\sqrt{a}}+\sqrt[3]{2-\sqrt{a}}
$$

an integer?
Solution 1. Let $x=\sqrt[3]{2+\sqrt{a}}, y=\sqrt[3]{2-\sqrt{a}}$ and $z=x+y$. Then

$$
z^{3}=(x+y)^{3}=x^{3}+y^{3}+3(4-a)^{1 / 3} z=4+3(4-a)^{1 / 3} z
$$

Hence $27(4-a) z^{3}=\left(z^{3}-4\right)^{3}$, whence

$$
a=4-\frac{\left(z^{3}-4\right)^{3}}{27 z^{3}}=\frac{108 z^{3}-\left(z^{3}-4\right)^{3}}{27 z^{3}}
$$

Since $a \geq 0, z$ must be either (1) a positive integer for which $108 z^{3} \geq\left(z^{3}-4\right)^{3}$, or (2) a negative integer for which $108 z^{3} \leq\left(z^{3}-4\right)^{3}$.

Condition (1) forces $108 \geq\left(z^{2}-(4 / z)\right)^{3} \geq\left(z^{2}-4\right)^{3}$, so that $z=1,2$. Condition (2) forces $108 \geq$ $\left(z^{2}-(4 / z)\right)^{3} \geq z^{6}$, which is satisfied by no negative integer value of z. Hence, we must have that $(z, a)=$ $(1,5),(2,100 / 27)$. Since $z=x+y$ is equivalent to $z^{3}=4+3(4-a)^{1 / 3} z$, it is straightforward to check that both these answers are correct. Hence $a=5$ or $a=100 / 27$.

Solution 2. [Yifan Wang] With x and y defined as in the first solution, note that $x>y$ and that $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$. Since $x^{2}+y^{2}>(x+y)^{2} / 2$ and $-x y>-(x+y)^{2} / 4$, we have that $4>(x+y)^{3} / 4$, whence $x+y \leq 2$. Since $x^{3}>-y^{3}, x>-y$, so that $x+y>0$. Hence $x+y=1$ or $x+y=2$.

When $x+y=1, x^{2}-x y+y^{2}=4$ and so $x y=-1$, and $x=\frac{1}{2}(1+\sqrt{5}), y=\frac{1}{2}(1-\sqrt{5})$. Therefore $4-a=x^{3} y^{3}=-1$ so that $a=5$.

When $x+y=2$, then $x^{2}-x y+y^{2}=2$, so that $x y=2 / 3$. Therefore $x=\frac{1}{3}(3+\sqrt{3}), y=\frac{1}{3}(3-\sqrt{3})$ and $4-a=8 / 27$. Thus, $a=100 / 27$. These solutions check out.

Solution 3. [A. Tavakoli] Denote the left side of the equation by $f(a)$. When $a \geq 4$,

$$
0 \leq f(a)=(\sqrt{a}+2)^{1 / 3}-(\sqrt{a}-2)^{1 / 3}=\frac{4}{(\sqrt{a}+2)^{2 / 3}+(a-4)^{1 / 3}+(\sqrt{a}-2)^{2 / 3}} \leq 4^{1 / 3}<3
$$

Let $0 \leq a \leq 4$; again $f(a)>0$. Observe that

$$
\left(\frac{1}{2}(u+v)\right)^{\frac{1}{3}} \geq \frac{1}{2} u^{\frac{1}{3}}+\frac{1}{2} v^{\frac{1}{3}}
$$

for all nonnegative values of u and v. (This can be seen by using the concavity of the function $t^{1 / 3}$, or from the power-mean inequality $(1 / 2)(s+t) \leq\left[(1 / 2)\left(s^{3}+t^{3}\right)\right]^{1 / 3}$.) Setting $u=\sqrt[3]{2+\sqrt{a}}$ and $v=\sqrt[3]{2-\sqrt{a}}$, we find that $3>2 \times 2^{1 / 3} \geq f(a)>0$ with equality if and only if $a=0$. Hence the only possible integer values of $f(a)$ are 0 and 1 .

Let $x=\sqrt[3]{2-\sqrt{a}}$, so that $2+\sqrt{a}=4-x^{3}$. Then

$$
\begin{aligned}
f(a)=1 & \Longleftrightarrow x+\left(4-x^{3}\right)^{1 / 3}=1 \\
& \Longleftrightarrow 4-x^{3}=1-3 x+3 x^{2}-x^{3} \\
& \Longleftrightarrow x^{2}-x-1=0 \Longleftrightarrow x=(1 \pm \sqrt{5}) / 2 \\
& \Longleftrightarrow x^{3}=2 \pm \sqrt{5} .
\end{aligned}
$$

The larger root of the quadratic leads to $x^{3}>2$ and so is extraneous. Hence $x^{3}=2-\sqrt{5}$, and so $\sqrt{a}=\sqrt{5}$, $a=5$.

$$
\begin{aligned}
f(a)=2 & \Longleftrightarrow x+\left(4-x^{3}\right)^{1 / 3}=2 \\
& \Longleftrightarrow 4-x^{3}=(2-x)^{3}=8-12 x+6 x^{2}-x^{3} \\
& \Longleftrightarrow 3 x^{2}-6 x+2=0 \Longleftrightarrow x=\frac{3 \pm \sqrt{3}}{3} \ldots
\end{aligned}
$$

Now,

$$
\left(\frac{3 \pm \sqrt{3}}{3}\right)^{3}=2 \pm \frac{10 \sqrt{3}}{9}
$$

The larger value of x leads to $x^{3}>2$, and so is inadmissible. The smaller value of x leads to $x^{3}=2-(10 \sqrt{3} / 9)$ and $\sqrt{a}=(10 \sqrt{3} / 9), a=100 / 27$. Both values of a check out.
466. For a positive integer m, let \bar{m} denote the sum of the digits of m. Find all pairs of positive integers (m, n) with $m<n$ for which $(\bar{m})^{2}=n$ and $(\bar{n})^{2}=m$.

Solution. Let $m=m_{k} \cdots m_{1} m_{0}$ where $0 \leq m_{i} \leq 9$ are the digits of m. Then

$$
10^{k} \leq m<n=\left(m_{k}+\cdots+m_{0}\right)^{2} \leq[(k+1) 10]^{2}
$$

whence $10^{k-2} \leq(k+1)^{2}$ and $0 \leq k \leq 3$.
Hence $m<n=\left(m_{3}+m_{2}+m_{1}+m_{0}\right)^{2} \leq(4 \times 9)^{2}=36^{2}$. Since m and n are both perfect squares, we need only consider $m=r^{2}$, where $1 \leq r \leq 36$.

In the case that $k=3, \bar{m}<1+9+9+9=28$. Since $28^{2}<1000<m<n$, there are no examples. In the case that $k=2, \bar{m}<6+9+9=24$ and so $n^{2} \leq 24^{2}$. The only possibility is $(m, n)=(169,256)$. There are no possibilities when $k=0$ or $k=1$.

Hence, the only number pair is $(m, n)=(169,256)$.
Comment. This is problem 621 from The College Mathematics Journal.
467. For which positive integers n does there exist a set of n distinct positive integers such that
(a) each member of the set divides the sum of all members of the set, and
(b) none of its proper subsets with two or more elements satisfies the condition in (a)?

Solution. When $n=1$, condition (b) is satisfied vacuously, and any singleton will do. When $n=2$, such a set cannot be found. If a and b are any two positive integers, then condition (b) entails that both a and b divide $a+b$, and so must divide each other. This cannot happen when a and b are distinct.

When $n \geq 3$, a set of the required type can be found. For example, let

$$
S_{n}=\left\{1,2,2 \times 3,2 \times 3^{2}, \cdots 2 \times 3^{n-3}, 3^{n-2}\right.
$$

The sum of the elements in S_{n} is $2 \times 3^{n-2}$, which is divisible by each member of S_{n}.
Consider any proper subset R of S_{n} with at least three numbers. If 3^{n-2} belongs to R, then the sum of the elements of R must be strictly between 3^{n-2} and $2 \times 3^{n-2}$, and so not divisible by 3^{n-2}. If R does not contain 3^{n-2}, then its largest entry has the form 2×3^{k} with $1 \leq k \leq n-3$. Then the sum of R is greater than 2×3^{k} and does not exceed $1+2\left(1+3+\cdots+3^{k}\right)=3^{k+1}<2\left(2 \times 3^{k}\right)$. Hence this sum is not divisible by 2×3^{k}. As we have seen, no doubleton satisfies the condition. Hence (b) is satisfied for all subsets of S_{n}.

Comment. This is problem 1504 in the October, 1996 issue of Mathematics Magazine.
468. Let a and b be positive real numbers satisfying $a+b \geq(a-b)^{2}$. Prove that

$$
x^{a}(1-x)^{b}+x^{b}(1-x)^{a} \leq \frac{1}{2^{a+b-1}}
$$

for $0 \leq x \leq 1$, with equality if and only if $x=\frac{1}{2}$.
Comment. Denote the left side by $f(x)$. When $a=b, f(x)=2 x^{a}(1-x)^{a}$, which is maximized when $x=1 / 2$, its maximum value being 2×4^{-a}. In the general case, the solution can be obtained by calculus. Since $f(0)=f(1)=0$ and the function possesses a derivative everywhere, the maximum occurs when $f^{\prime}(x)=0$ and $0<x<1$. Wolog, assume that $a<b$. We have that

$$
f^{\prime}(x)=x^{a-1}(1-x)^{a-1}\left[(a-(a+b) x)(1-x)^{b-a}+(b-(a+b) x) x^{b-a}\right] .
$$

This solution can be found in Mathematics Magazine 70:4 (October, 1997), 301-302 (Problem 1505), and is fairly technical. It would be nice to have a more transparent argument. Is there a solution that avoids calculus, at least for rational a and b ?

A second solution, employs the substitution $2 x=1-y$ to get the equivalent inequality

$$
(1-y)^{a}(1+y)^{b}+(1-y)^{b}(1+y)^{a} \leq 2
$$

for $|y| \leq 1$. Wolog, we can let $a=b+c$ with $c \geq 0$. Then the condition becomes $2 b \geq c^{2}-c$. Then the inequality is equivalent to

$$
\left(1-y^{2}\right)^{b}\left[(1-y)^{c}+(1+y)^{c}\right] \leq 2,
$$

for $|y| \leq 1$.
Let $0 \leq c \leq 1$. Then, for $t>0$, the function t^{c} is concave, so that, for $u, v>0$,

$$
\left(\frac{u+v}{2}\right)^{c} \geq \frac{u^{c}+v^{c}}{2}
$$

Setting $(u, v)=(1-y, 1+y)$, we find that $(1-y)^{c}+(1+y)^{c} \leq 2$ for $|y| \leq 1$. Hence the inequality holds, with equality occurring when $y=0(x=1 / 2)$.

When $c>1$, I do not have a clean solution. First, it suffices to consider the inequality when b is replaced by $\frac{1}{2}\left(c^{2}-c\right)$. Thus, we need to establish that

$$
\begin{equation*}
\left(1-y^{2}\right)^{(1 / 2)\left(c^{2}-c\right)}\left[(1-y)^{c}+(1-y)^{c}\right] \leq 2 \tag{*}
\end{equation*}
$$

for $|y| \leq 1$. The derivative of the natural logarithm of the left side is a positive multiple of

$$
g(y)=(1+y)^{c}(1-c y)-(1-y)^{c}(1+c y) .
$$

If this can be shown to be nonpositive, then the result will follow. An equivalent inequality is

$$
\left(1-\frac{2 y}{1+y}\right)^{2}=\left(\frac{1-y}{1+y}\right)^{c} \geq\left(\frac{1-c y}{1+c y}\right)=\left(1-\frac{2 c y}{1+c y}\right)
$$

for $c>1$ and $|y| \leq 1$.
469. Solve for t in terms of a, b in the equation

$$
\sqrt{\frac{t^{3}+a^{3}}{t+a}}+\sqrt{\frac{t^{3}+b^{3}}{t+b}}=\sqrt{\frac{a^{3}-b^{3}}{a-b}}
$$

where $0<a<b$.
Solution 1. The equation is equivalent to

$$
\sqrt{t^{2}-a t+a^{2}}+\sqrt{t^{2}-b t+b^{2}}=\sqrt{a^{2}+a b+b^{2}}
$$

Square both sides of the equation, collect the nonradical terms on one side and the radical on the other and square again. Once the polynomials are expanded and like terms collected, we obtain the equation

$$
0=t^{2}(a+b)^{2}-2 a b(a+b) t+a^{2} b^{2}=[t(a+b)-a b]^{2}
$$

whence $t=a b /(a+b)$. This can be checked by substituting it into the equation.
Solution 2. [Y. Wang] As in solution 1, we can find an equivalent equation, which can then be manipulated to

$$
\sqrt{(t-(a / 2))^{2}+(\sqrt{3} a / 2)^{2}}+\sqrt{(t-(b / 2))^{2}+(-\sqrt{3} b / 2)^{2}}=\sqrt{(a / 2-b / 2)^{2}+(\sqrt{3} a / 2+\sqrt{3} b / 2)}
$$

If we consider the points $A \sim(a / 2, \sqrt{3} a / 2), B \sim(b / 2,-\sqrt{3} b / 2)$ and $T \sim(t, 0)$, then we can interpret this equation as stating that $A T+B T=A B$. By the triangle inequality, we see that T must lie on $A B$, so that the slopes of $A T$ and $B T$ are equal. Thus

$$
\frac{\sqrt{3} a}{a-2 t}=\frac{\sqrt{3} b}{2 t-b}
$$

whence $t=a b /(a+b)$.
470. Let $A B C, A C P$ and $B C Q$ be nonoverlapping triangles in the plane with angles $C A P$ and $C B Q$ right. Let M be the foot of the perpendicular from C to $A B$. Prove that lines $A Q, B P$ and $C M$ are concurrent if and only if $\angle B C Q=\angle A C P$.

Solution 1. [A. Tavakoli] Let $B P$ and $A Q$ intersect at K. Let $\angle B C Q=\alpha, \angle A C P=\beta$ and $\angle B C A=\gamma$. By the trigonometric form of Ceva's theorem, $C M, A P$ and $B Q$ are concurrent if and only if

$$
\begin{equation*}
\frac{\sin \angle B C M}{\sin \angle A C M} \cdot \frac{\sin \angle K A C}{\sin \angle K A B} \cdot \frac{\sin \angle K B A}{\sin \angle K B C}=1 \tag{1}
\end{equation*}
$$

This holds whether K lies inside or outside of the triangle.
We have that $\sin \angle B C M=\cos \angle C B A, \sin \angle A C M=\cos \angle C A B$, and, by the Law of Sines applied to triangles $A C Q$ and $A B Q$,

$$
\sin \angle K A C=\sin \angle Q A C=(\sin \angle A C Q)(|Q C|) /(|A Q|)
$$

and

$$
\sin \angle K A B=\sin \angle Q A B=(\sin \angle A B Q)(|Q B|) /(|A Q|)
$$

Therefore

$$
\frac{\sin \angle K A C}{\sin \angle K A B}=\left(\frac{\sin \angle A C Q}{\sin \angle A B Q}\right) \cdot\left(\frac{|Q C|}{|Q B|}\right)=\left(\frac{\sin (\gamma+\alpha)}{\sin \left(\angle A B C+90^{\circ}\right)}\right) \cdot\left(\frac{1}{\sin \alpha}\right)=\frac{-\sin (\gamma+\alpha)}{(\cos \angle C B A) \sin \alpha}
$$

Similarly,

$$
\begin{aligned}
& \sin \angle K B A=\sin \angle B A P(|A P| /|B P|) \\
& \sin \angle K B C=\sin \angle B C P(|P C| /|B P|)
\end{aligned}
$$

and so

$$
\frac{\sin \angle K B A}{\sin \angle K B C}=\frac{\sin \left(\angle B A C+90^{\circ}\right)}{\sin (\beta+\gamma)} \cdot \frac{|A P|}{|P C|}=\frac{-\cos (\angle B A C) \sin \beta}{\sin (\beta+\gamma)}
$$

Hence the condition for concurrency becomes

$$
\begin{gathered}
\frac{\sin (\gamma+\alpha)}{\sin \alpha} \cdot \frac{\sin \beta}{\sin (\gamma+\beta)}=1 \\
\Longleftrightarrow \sin \gamma \cot \alpha+\cos \gamma=\sin \gamma \cot \beta+\cos \gamma \\
\Longleftrightarrow \cot \alpha=\cot \beta \Longleftrightarrow \angle B C Q=\alpha=\beta=\angle A C P .
\end{gathered}
$$

This is the required result.
Solution 2. We do some preliminary work. Suppose that $P B$ and $A Q$ intersect at O, and that X and Y are the respective feet of the perpendiculars from C to $P B$ and $A Q$. Since $\angle C X P=\angle C A P=90^{\circ}$, $C A X P$ is concyclic and so $\angle A C P=\angle A X P$. Similarly $C Q B Y$ is concyclic and so $\angle B C Q=\angle B Y Q$. Since $\angle C X O=\angle C Y O=90^{\circ}, X$ and Y lie on the circle with diameter $C O$. Hence $\angle Y C O=\angle Y X O=\angle Y X B$.

Now suppose that $\angle B C Q=\angle A C P$. Let $C O$ produced meet $A B$ at N. Since $\angle A X P=\angle A C P=$ $\angle B C Q=\angle B Y Q$, it follows that $\angle A X B=\angle A Y B$ so that $B Y X A$ is concyclic and so $\angle Y X B=\angle Y A B$. Therefore

$$
\angle Y C N=\angle Y C O=\angle Y X B=\angle Y A B=\angle Y A N
$$

and $A N Y C$ is concyclic/ Hence $\angle C N A=\angle C Y A=90^{\circ}$ and N must coincide with M.
On the other hand, let $C M$ pass through O. Since $\angle C Y A=\angle C M A=90^{\circ}, A M Y C$ is concyclic so that

$$
\angle Y A B=\angle Y A M=\angle Y C M=\angle Y C O=\angle Y X B
$$

Therefore $B A X Y$ is concyclic and $\angle B X A=\angle B Y A \Rightarrow \angle A X P=\angle B Y Q$. Since $C A X P$ and $C Y B Q$ are concyclic, $\angle A C P=\angle A X P=\angle B Y Q=\angle B C Q$.
471. Let I and O denote the incentre and the circumcentre, respectively, of triangle $A B C$. Assume that triangle $A B C$ is not equilateral. Prove that $\angle A I O \leq 90^{\circ}$ if and only if $2 B C \leq A B+C A$, with equality holding only simultaneously.

Solution 1. Wolog, let $A B \geq A C$. Suppose that the circumcircle of triangle $A B C$ intersects $A I$ in D. Construct the circle Γ with centre D that passes through B and C. By the symmetry of $A B$ and $A C$ in the angle bisector $A D$, this circle intersects segment $A B$ in a point F such that $A F=A C$. Let Γ intersect $A D$ at P. Then chords $C P$ and $F P$ have the same length. If $A B>A C$, this implies that P is on the angle bisector of angle $A B C$. If $A B=A C$, then $\angle A B C=\angle A D C=\angle P D C=2 \angle P B C$. In either case, $P=I$.

Let E be on the ray $B A$ produced such that $A E=A C$. Since $\angle D A C=\frac{1}{2} \angle B A C=\angle A E C$ and $\angle A D C=\angle A B C=\angle E B C$, triangles $A D C$ and $E B C$ are similar, and so

$$
I D: A D=C D: A D=B C: B E=B C:(A B+A C)
$$

But $\angle A I O \leq 90^{\circ}$ if and only if $I D / A D \leq 1 / 2$, and so is equivalent to $2 B C \leq A B+A C$, with equality holding only simultaneously. (Solution due to Wu Wei Chao in China.)

Solution 2. We have that $\angle A I O \leq 90^{\circ}$ if and only if $\cos \angle A I O \geq 0$, if and only if $|A O|^{2} \leq|O I|^{2}+|I A|^{2}$. Let a, b, c be the respective sidelengths of $B C, C A, A B$; let R be the circumradius and let r be the inradius of triangle $A B C$. Since, by Euler's formula, $|O I|^{2}=R^{2}-2 R r$, and $r=|I A| \sin (A / 2)$, the foregoing inequality is equivalent to

$$
2 R \leq \frac{r}{\sin ^{2}(A / 2)}=\frac{2 r}{1-\cos A}
$$

Applying $R=a /(2 \sin A), r=b c \sin A /(a+b+c)$ and $2 b c \cos A=b^{2}+c^{2}-a^{2}$, we find that

$$
\begin{aligned}
r-R(1-\cos A) & =\frac{b c \sin A}{a+b+c}-\frac{a(1-\cos A)}{2 \sin A} \\
& =\sin A\left[\frac{b c}{a+b+c}-\frac{a(1-\cos A)}{2 \sin ^{2} A}\right] \\
& \frac{\sin A}{2(1+\cos A)(a+b+c)}[2 b c+2 b c \cos A-a(a+b+c)] \\
& \frac{\sin A}{2(1+\cos A)(a+b+c)}\left[2 b c+b^{2}+c^{2}-a^{2}-a(a+b+c)\right] \\
& \frac{\sin A}{2(1+\cos A)(a+b+c)}\left[(b+c)^{2}-2 a^{2}-a(b+c)\right] \\
& \frac{\sin A}{2(1+\cos A)(a+b+c)}[(b+c+a)(b+c-2 a)]
\end{aligned}
$$

Hence the inequality $R(1-\cos A) \leq r$ is equivalent to $2 a \leq b+c$. The desired result follows. (Solution due to Can A. Minh, USA)

Solution 3. [Y. Wang] Let $A I$ intersect the circumcircle of triangle $A B C$ at D. Since $A I$ bisects the angle $B A C$ and the arc $B C$, we have that $B D=B C$. Also,

$$
\angle D I C=\angle C A D+\angle A C I=\angle B C D+\angle B C I=\angle D C I
$$

whence $D C=D I=D B$. Using Ptolemy's Theorem, we have that

$$
A B \times C D+B D \times A C=A D \times B C
$$

so that

$$
A B \times D I+D I \times A C=(A I+I D) \times B C
$$

Hence

$$
k \equiv \frac{A B+A C}{B C}=1+\frac{A I}{I D}
$$

If $A B=A C$, then A, O, I are collinear. Let $k<2$; then $A I<I D$ and I lies between A and O and $\angle A I O=180^{\circ}$. Let $k>2$; then $A I>I D, O$ lies between A and I and $\angle A I O=0^{\circ}$. [If $k=2$, then $A I=I D$, the incentre and circumcentre coincide and the triangle is equilateral - the excluded case.]

Wolog, suppose that $A B>A C$. Then the circumcentre O lies within the triangle $A B D$. Let P be the foot of the perpendicular from O to $A D$. Then P is the midpoint of $A D$ and the angle $A I O$ is greater than, equal to or less than 90° according as I is in the segment $A P$, coincides with P or is in the segment $P D$. These correspond to $k<2, k=2$ and $k>2$, and the result follows.

