Solutions to October problems

409. Find the number of ways of dealing n cards to two persons $(n \geq 2)$, where the persons may receive unequal (positive) numbers of cards. Disregard the order in which the cards are received.

Solution. If we allow hands with no cards, there are 2^{n} ways in which they may be dealt (each card may go to one of two people). There are two cases in which a person gets no cards. Subtracting these gives the result: $2^{n}-2$.
410. Prove that $\log n \geq k \log 2$, where n is a natural number and k the number of distinct primes that divide n.

Solution. Let n be a natural number greater than 1 and $p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ its prime factorization. Since $p_{i} \geq 2$ and $a_{i} \geq 1$ for all i,

$$
n \geq 2^{a_{1}+a_{2}+\cdots+a_{k}} \geq 2^{k}
$$

This is also true for $n=1$, for in this case, $k=0$ and $n=2^{0}$. Thus, for any base b exceeding 1 ,

$$
\log _{b} n \geq \log _{b} 2^{k}=k \log _{b} 2
$$

411. Let b be a positive integer. How many integers are there, each of which, when expressed to base b, is equal to the sum of the squares of its digits?

Solution. A simple calculation shows that 0 and 1 are the only single-digit solutions. We show that there are no solutions with three or more digits. Suppose that $n=a_{0}+a_{1} b+\cdots+a_{m} b^{m}$ where $m \geq 2$, $1 \leq a_{m} \leq b-1$ and $0 \leq a_{i} \leq b-1$ for $0 \leq i \leq m-1$. Then

$$
\begin{aligned}
\left(a_{0}+a_{1} b+\cdots+a_{m} b^{m}\right) & -\left(a_{0}^{2}+a_{1}^{2}+\cdots+a_{m}\right)^{2} \\
& =a_{1}\left(b-a_{1}\right)+a_{2}\left(b^{2}-a_{2}\right)+\cdots+a_{m}\left(b^{k}-a_{m}\right)-a_{0}\left(a_{0}-1\right) \\
& \geq a_{m}\left(b^{m}-a_{m}\right)-a_{0}\left(a_{0}-1\right) \geq 1 \cdot\left(b^{2}-(b-1)\right)-(b-1)(b-2) \\
& =2 b-1 \geq 0
\end{aligned}
$$

Thus, there are at most two digits for any example.
Let $N(b)$ denote the total number of solutions, and $N_{2}(b)$ the number of two digit solutions. Thus, $N(n)=N_{2}(b)+2$.

Thus, $N_{2}(n)$ is the number of pairs $\left(a_{0}, a_{1}\right)$ satisfying

$$
\begin{equation*}
a_{0}+a_{1} b=a_{0}^{2}+a_{1}^{2}, \quad 0 \leq a_{0}<b, 1 \leq a_{1}<b \tag{1}
\end{equation*}
$$

The transformation given by $2 a_{0}=p+1,2 a_{1}=b+q$ establishes a one-one correspondence between the pairs $\left(a_{0}, a_{1}\right)$ satisfying (1) and the pairs (p, q) satisfying

$$
\begin{equation*}
p^{2}+q^{2}=1+b^{2}, \quad p \text { odd }, 3 \leq p \leq b, 1 \leq q \leq b \tag{3}
\end{equation*}
$$

Now we can express the number of solutions of (2) in terms of the number $r(k)$ of solutions to

$$
\begin{equation*}
c^{2}+d^{2}=k \tag{3}
\end{equation*}
$$

Suppose that b is even. Then $1+b^{2}$ is odd, so that exactly one of p or q is odd. Thus, given a solution (p, q) to (2) we can generate three others that solve (3) via $(c, d)=(-p, q),(q, p),(q-p)$. We also add the eight remaining solutions $(\pm 1, \pm b)$ and $(\pm b, \pm 1)$. This shows that $r\left(1+b^{2}\right)=4 N_{2}(b)+8=4 N(b)$.

Suppose that b is odd. Then $1+b^{2} \equiv 2(\bmod 4)$; hence, both p and q must be odd. Thus, from any solution (p, q) to (2) we can generate another solution to (3) via $(c, d)=(-p, q)$. We also add the remaining four uncounted solutions, $(\pm 1, \pm b)$. This shows that $r\left(1+b^{2}\right)=2 N_{2}(b)+4=2 N(b)$.

The quantity $r(k)$ can be computed from a formula given, for example, in the book Introduction to the Theory of Numbers by Hardy and Wright. Using the fact that no prime of the form $4 j+3$ can divide $1+b^{2}$, we find that

$$
r\left(1+b^{2}\right)= \begin{cases}4 \tau\left(1+b^{2}\right), & \text { if } b \text { is even } \\ 2 \tau\left(1+b^{2}\right), & \text { if } b \text { is odd }\end{cases}
$$

where $\tau(n)$ is the number of positive integer divisors of n. Thus $N(b)=\tau\left(1+b^{2}\right)$.
412. Let A and B be the midpoints of the sides, $E F$ and $E D$, of an equilateral triangle $D E F$. Extend $A B$ to meet the circumcircle of triangle $D E F$ at C. Show that B divides $A C$ according to the golden section. (That is, show that $B C: A B=A B: A C$.)

Solution. Consider the chords $E D$ and $C C^{\prime}$. The angles $E B C^{\prime}$ and $C B D$ are equal, since they are vertically opposite, while angles $C^{\prime} E D$ and $D C C^{\prime}$ are equal since they are subtended by the same chord $C^{\prime} D$. Thus triangles $C^{\prime} E B$ and $D C B$ are similar. Therefore $E B: C^{\prime} B=B C: B D$.

Since $E B=B D=A B$,

$$
B C: A B=B C: B D=E C: C^{\prime} B=A B: A C
$$

413. Let I be the incentre of triangle $A B C$. Let A^{\prime}, B^{\prime} and C^{\prime} denote the intersections of $A I, B I$ and $C I$, respectively, with the incircle of triangle $A B C$. Continue the process by defining I^{\prime} (the incentre of triangle $A^{\prime} B^{\prime} C^{\prime}$), then $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, etc.. Prove that the angles of triangle $A^{(n)} B^{(n)} C^{(n)}$ get closer and closer to $\pi / 3$ as n increases.

Solution. From triangle $I A C$ we have that $\angle A I C=\pi-\frac{A}{2}-\frac{C}{2}=\frac{\pi+B}{2}$, so that $B^{\prime}=\angle A^{\prime} B^{\prime} C^{\prime}=$ $\frac{1}{2} \angle A^{\prime} I C^{\prime}=\frac{1}{2} \angle A I C=\frac{\pi+B}{4}$. Similar relations hold for A^{\prime} and C^{\prime}. Assuming, wolog, $A \leq B \leq C$, then $A^{\prime}=\frac{1}{4}(\pi+A) \leq B^{\prime} \leq \frac{1}{4}(\pi+B) \leq C^{\prime}=\frac{1}{4}(\pi+C)$, and $C^{\prime}-A^{\prime}=\frac{1}{4}(C-A)$, so that triangle $A^{\prime} B^{\prime} C^{\prime}$ is "four times closer" to equilateral than triangle $A B C$ is. The result follows.
414. Let $f(n)$ be the greatest common divisor of the set of numbers of the form $k^{n}-k$, where $2 \leq k$, for $n \geq 2$. Evaluate $f(n)$. In particular, show that $f(2 n)=2$ for each integer n.

Solution. For any prime $p, f(n)$ cannot contain a factor p^{2} because $p^{2} \nmid k\left(k^{n-1}-1\right)$ for $k=p$. For any $n, 2 \mid f(n)$.

If p is an odd prime and if a is a primitive root modulo p, then $p \mid a\left(a^{n-1}-1\right)$ only if $(p-1) \mid(n-1)$. On the other hand, if $(p-1) \mid(n-1)$, then $p \mid\left(k^{n}-k\right)$ for every k. Thus, if P_{n} is the product of the distinct odd primes p for which $(p-1) \mid(n-1)$, then $f(n)=2 P_{n}$. (In particular, $6 \mid f(n)$ for every odd n.)

As $p-1$ is not a divisor of $2 n-1$ for any odd prime p, it follows that $f(n)-2$.
Comments. The symbol|means "divides" or "is a divisor of". For every prime p, there is a number a (called the primitive root modulo p such that $p-1$ is the smallest values of k for which $a^{k} \equiv 1$ modulo p.
415. Prove that

$$
\cos \frac{\pi}{7}=\frac{1}{6}+\frac{\sqrt{7}}{6}\left(\cos \left(\frac{1}{3} \arccos \frac{1}{2 \sqrt{7}}\right)+\sqrt{3} \sin \left(\frac{1}{3} \arccos \frac{1}{2 \sqrt{7}}\right)\right) .
$$

Solution. The identity

$$
\cos 7 \theta=(\cos \theta+1)\left(8 \cos ^{3} \theta-4 \cos ^{2} \theta-4 \cos \theta+1\right)^{2}-1
$$

(derive this using de Moivre's theorem, or otherwise) implies that the three roots of $f(x)=8 x^{3}-4 x^{2}-4 x+1$ are $\cos \frac{\pi}{7}, \cos \frac{3 \pi}{7}$ and $\cos \frac{5 \pi}{7}$. Observe that $\cos \frac{\pi}{7}>\cos \frac{3 \pi}{7}>0>\cos \frac{5 \pi}{7}$. Thus, $\cos \frac{\pi}{7}$ is the only root of the cubic polynomial $f(x)$ greater than $\cos \frac{3 \pi}{7}$.

Let

$$
a=\cos \left(\frac{1}{3} \arccos \frac{-1}{2 \sqrt{7}}\right)
$$

and let

$$
\begin{aligned}
c & =\frac{1}{6}+\frac{\sqrt{7}}{6}\left(\cos \left(\frac{1}{3} \arccos \frac{1}{2 \sqrt{7}}\right)+\sqrt{3} \cos \left(\frac{1}{3} \arccos \frac{1}{2 \sqrt{7}}\right)\right) \\
& =\frac{1}{6}+\frac{\sqrt{7}}{3} \cos \left(\frac{1}{3}\left(\pi-\arccos \frac{1}{2 \sqrt{7}}\right)\right) \\
& =\frac{1}{6}+\frac{\sqrt{7}}{3} a
\end{aligned}
$$

The function $g(x)=\cos \left(\frac{1}{3} \arccos x\right)$ is increasing for $-1 \leq x \leq 1$, so that $a>\cos \left(\frac{1}{3} \arccos (-1)\right)=\frac{1}{2}$. Therefore

$$
x>\frac{1+\sqrt{7}}{6}>\frac{1}{2}>\cos \frac{3 \pi}{7}
$$

Since $6 c-1=2 \sqrt{7} a$, the identity $4 \cos ^{3} \theta-3 \cos \theta=\cos 3 \theta$ gives

$$
\frac{1}{14 \sqrt{7}}(6 c-1)^{3}-\frac{3}{2 \sqrt{7}}(6 c-1)=\frac{-1}{2 \sqrt{7}} .
$$

Hence

$$
f(c)=\frac{14 \sqrt{7}}{27}\left(\frac{1}{14 \sqrt{7}}(6 c-1)^{3}-\frac{3}{2 \sqrt{7}}(6 c-1)+\frac{1}{2 \sqrt{7}}\right)=0
$$

and so $c=\cos \frac{\pi}{7}$.

