
Solutions to the June-July problems

388. A class with at least 35 students goes on a cruise. Seven small boats are hired, each capable of carrying
300 kilograms. The combined weight of the class is 1800 kilograms. It is determined that any group of
35 students can fit into the boats without exceeding the capacity of any one of them. Prove that it is
unnecessary to leave any student off the cruise.

Solution. We prove the result by induction on the number of students. By hypothesis, if there are only
35 students, then all can be accommodated. Suppose that there are n students, where n ≥ 35. Let the
weights of these students be w1, w2, · · · , wn kg in decreasing order.

Suppose that we have accommodated the k heaviest of these students for some k ≥ 35. If k < n, then
the weight wk+1 of the (k + 1)th heaviest student satisfies

36wk+1 ≤ w1 + · · ·+ w35 + w36 + · · ·+ wk+1 ≤ 1800 ,

whence wk+1 ≤ 50. The amount of capacity available in the boats is

2100− (w1 + · · ·+ wk) ≥ 2100− (1800− wk+1) = 300 + wk+1

≥ 6wk+1 + wk+1 = 7wk+1 .

Since all seven boats can accommodate at least 7wk+1 kg, at least one of them can accomodate at least wk+1

kg, and so the (k + 1)th heaviest student can get into this boat. We can continue on in this way until all
students are loaded.

389. Let each of m distinct points on the positive part of the x−axis be joined by line segments to n distinct
points on the positive part of the y−axis. Obtain a formula for the number of intersections of these
segments (exclusive of endpoints), assuming that no three of the segments are concurrent.

Solution 1. An intersection is determined by a choice of two points on each axis, and to each such choice
there is exactly one intersection in which the segments are formed by taking the outer point on one axis and
joining it to the inner point on the other. Thus there are

(
m
2

)(
n
2

)
intersections.

Solution 2. [J. Park] Let the points on the x−axis be in order X1, · · · , Xm and the points on the y−axis
be in order Y1, · · · , Yn. We draw the segments one at a time, starting with the segments [Xi, Yn] (1 ≤ i ≤ m).
This produces no interesection points. Now, for 1 ≤ i ≤ m, draw [Xi, Yn−1], which produces i−1 intersection
points with [Xj , Yn] when 1 ≤ j ≤ i−1. All these segments ending in Yn−1 produce 1+2+· · ·+(m−1) =

(
m
2

)
intersections with segments ending in Yn.

The segments ending in Yn−2 produce
(
m
2

)
intersections with segments ending in Yn−1 and

(
m
2

)
inter-

sections with segments ending in Yn. Continuing on, we find that the segments ending in Yn−j make j
(
m
2

)
intersections altogether with segments ending in Yk for k > n− j for 1 ≤ j ≤ n− 1. Hence the total number
of intersections is

(1 + 2 + · · ·+ n− 1)
(

m

2

)
=

(
n

2

)(
m

2

)
.

390. Suppose that n ≥ 2 and that x1, x2, · · · , xn are positive integers for which x1 +x2 + · · ·+xn = 2(n+1).
Show that there exists an index r with 0 ≤ r ≤ n− 1 for which the following n− 1 inequalities hold:

xr+1 ≤ 3

xr+1 + xr+2 ≤ 5

· · ·

xr+1 + xr+2 + · · ·+ rr+i ≤ 2i + 1
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· · ·

xr+1 + xr+2 + · · ·+ xn ≤ 2(n− r) + 1

· · ·

xr+1 + · · ·+ xn + x1 + · · ·+ xj ≤ 2(n + j − r) + 1

· · ·

xr+1 + xr+2 + · · ·+ xn + x1 + · · ·+ xr−1 ≤ 2n− 1

where 1 ≤ i ≤ n − r and 1 ≤ j ≤ r − 1. Prove that, if all the inequalities are strict, then r is unique,
and that, otherwise, there are exactly two such r.

Solution 1. First, consider the case that n = 2. Then x1 + x2 = 6. When x1 = 1, 2, take r = 0; when
x1 = 4, 5, take r = 1, and when x1 = x3 = 3, take r = 0 or r = 1. Thus the result holds.

We prove the result by induction. Suppose that the result holds for n = m ≥ 2. Let x1 +x2 +x3 + · · ·+
xm+1 = 2(m + 2). Observe that at least one xi does not exceeds 2, since 3(m + 1) > 2(m + 2).

Case (i): Suppose that xk = 2 for some k, which we may suppose exceeds 1. (Note that the conditions
are cyclic in the indices.) Consider the set {x1, x2, · · · , xk−1, xk+1, · · · , xm+1}. This satisfies the hypotheses
for the case n = m. We may suppose that r = 0, as the argument is essentially the same for any index.
Then

s∑
i=1

xi ≤ 2s + 1 (1 ≤ s ≤ k − 1)

k−1∑
i=1

xi +
s∑

i=k+1

xi ≤ 2(s− 1) + 1 (k + 1 ≤ s ≤ m) .

Restoring xk, we find that
∑s

i=1 xi ≤ 2s + 1 for 1 ≤ s ≤ m. Thus, a solution for n = m yields a solution for
n = m + 1. Conversely, any solution for n = m + 1 yields a solution for n = m. If r 6= k, the same value of
r works in both cases. If r = k, then taking out xk will give a solution for the n = m case with r = k + 1.
Equality will occur in the solution for n = m if and only if it occurs in the solutions for n = m + 1.

Case (ii): Suppose xk = 1 and xk+1 ≥ 2 (when k = m + 1, interpret this as x1 ≥ 2). The set
{x1, x2, · · · , xk−1, xk+1 − 1, · · · , xm+1} satisfies the hypothesis for the n = m case. We may suppose that
r = 0. When k ≥ 2,

s∑
i=1

xi ≤ 2s + 1 (1 ≤ s ≤ k − 1)

k−1∑
i=1

xi +
( s∑

i=k+1

xi

)
− 1 ≤ 2(s− 1) + 1 (k + 1 ≤ s ≤ m + 1) .

Restoring xk, we find that
∑

i=1 xi ≤ 2s+1. Thus r = 0 continues to work for the n = m+1 case. However,
when k = 1 and r = 0, we have that, when 2 ≤ s ≤ m − 1, (

∑s
i=2 xi) − 1 ≤ 2s − 1 so that

∑s
i=2 xi ≤ 2s.

Hence
∑s

i=1 xi ≤ 2s + 1 for 1 ≤ i ≤ m − 1. Equality will occur in the solution for n = m if and only if it
occurs in the solutions for n = m + 1. The results follows.

Solution 2. [B.H. Deng] We establish the existence of the requisite value of r. If the inequalities hold
for r = 1, Suppose that at least one inequality fails for r = 1. Then we can select m ≥ 2 so that

(1) x2 + · · ·+ xm = 2(m− 1) + w, where w ≥ 2;
(2) for 2 ≤ i < m, x2 + · · ·+ xi = 2(i− 1) + u and u < w;
(3) for m < j ≤ n, x2 + · · ·+ xj = 2(j − 1) + v and v ≤ w.

Thus, m is the first index where the discrepancy between x2 + · · ·+ xm and 2(m− 1) achieves its maximum
value.
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We show that r = m. If m < j ≤ n, then

xm+1 + · · ·+ xj = [2(j − 1) + v]− [2(m− 1) + w] = 2(j −m) + (v − w)
≤ 2(j −m) < 2(j −m) + 1 .

In particular,

xm+1 + · · ·+ xn = (x1 + · · ·+ xn)− (x1 + · · ·+ xm)
= 2(n + 1)− x1 − [2(m− 1) + w] = 2(n−m) + 4− x1 − w

from which
xm+1 + · · ·+ xn + x1 = 2(n−m + 1) + (2− w) ≤ 2(n−m + 1) .

If 2 ≤ i < m, then

xm+1 + · · ·+ xn + x1 + · · ·+ xi = 2(n−m) + 4− w + 2(i− 1) + u

= 2(n−m + i) + 2 + (u− w) < 2(n−m + i) + 2 ,

from which
xm+1 + · · ·+ xn + x1 + · · ·+ xi ≤ 2(n−m + i) + 1 .

We deal with the question of uniqueness. Wolog, we may suppose that the inequalities hold when r = 1.
Suppose that k ≥ 2 is such that x2 + · · ·+ xi ≤ 2(i− 1) for 2 ≤ i < k and x2 + · · ·+ xk = 2(k − 1) + 1. For
k < j ≤ n, we have that

xk+1 + · · ·+ xj = (x2 + · · ·+ xj)− (x2 + · · ·+ xk)
≤ 2(j − 1) + 1− 2(k − 1)− 1 = 2(j − k).

Also,
xk+1 + · · ·+ xn = 2(n + 1)− x1 − 2(k − 1)− 1 = 2(n− k + 1) + 1− x1

so that
xk+1 + · · ·+ xn + x1 ≤ 2(n− k + 1) + 1 .

For 2 ≤ i ≤ k − 1,

xk+1 + · · ·+ xn + x1 + · · ·+ xi ≤ 2(n− k + 1) + 1 + 2(i− 1) = 2(n− k + i) + 1 ,

so that the inequalities hold for r = k.

Comment. When n > 2 and all the xi exceed 1, then there is a direct argument. Since 3n > 2(n + 1)
and x1 + · · ·+ xn = 2(n + 1), we must have xi ≤ 2 for at least one index i. Since xi ≥ 2 for each i, there are
two possibilities. Either, all the xi but one are equal to 2 and the remaining one is equal to 4; or, all the xi

but two are equal to 2 and the remaining two are equal to 3. If xk = 4, then we must take r = k and we get
strict inequality throughout.

In the second case, suppose, wolog, that x1 = 3. If x2 = 3 as well, then we can take r = 1 or r = 2;
in the first case, xr+1 = 3, while in the second, x3 + · · · + xn + x1 = 2(n − 1) + 1 = 2n − 1. If xk = 3 for
3 ≤ k ≤ n − 1, then we can take r = 1 (in which case, for example, x2 + x3 + · · · + xk = 2(k − 1) + 1) or
r = k (in which case, for example, xk+1 + · · ·+ x1 = 2(n + 1− k) + 1.

391. Show that there are infinitely many nonsimilar ways that a square with integer side lengths can be
partitioned into three nonoverlapping polygons with integer side lengths which are similar, but no two
of which are congruent.
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Comment. Unfortunately, there was an error in the formulation of the problem, and it is not known
whether nonsimilar partitions can be made with integer side lengths as requested. However, full credit was
given to any students who achieved infinitely many nonsimilar partitions, without satisfying the numerical
condition.

Let ABCD be the square. Let w be any integer and suppose that u = 1+w and v = 1+w +w2. Thus,
u(1 + w + w2) = v(1 + w), and this will be the side length of the square. Select points E on AB, F on CD,
G on DA and H on EF so that |AE| = u, |EB| = uw(1 + w), |CF | = u(1 + w), |FD| = uw2, |DG| = vw,
|GA| = v. Then the three trapezoids AEHG, GHFD and CFEB are similar and |GH| = uw. Different
values of w give nonsimilar partitions, and the sides of the trapezoids parallel to the sides of the square will
have integer lengths. For the slant sides to have integer lengths, it is necessary to make

u2(w − 1)2 + v2 = (w + 1)2(w − 1)2 + (w2 + w + 1)2 = 2w4 + 2w3 + w2 + 2w + 2

a perfect square. The only possibility discovered so far is the case w = 1. We might achieve others if we can
find values of m and n for which w2 − 1 = 2mn and w2 + w + 1 = m2 − n2. It is unlikely that there are
infinitely many possibilities. Can these by found using some other strategy?

392. Determine necessary and sufficient conditions on the real parameter a, b, c that

b

cx + a
+

c

ax + b
+

a

bx + c
= 0

has exactly one real solution.

Solution 1. We look at a number of cases.

Case 1. abc = 0. If at least two of a, b, c vanish, then the equation is undefined. If, say, a = 0, bc 6= 0,
then the equation becomes

b

cx
+

c

b
= 0 ,

which, for x 6= 0 is equivalent to c2x + b2 = 0; this has the unique real solution x = −b2/c2.

Case 2. abc 6= 0, (a2 − bc)(b2 − ca)(c2 − ab) = 0. Suppose, first, say, a2 − bc = b2 − ca = 0. Then,
also, c2 − ab = 0. It follows that b/a = a/c = c/b = k for some nonzero value of k. Wew have that
k = c/b = (c/a)(a/b) = 1/k2, whence k3 = 1 and k = 1. The equation becomes 0 = 3/(x + 1) with no real
solution.

Suppose, on the other hand, say, that a2 − bc = 0 and (b2 − ca)(c2 − ab) 6= 0. Then b/a = a/c = k for
some real k 6= 1. Then b/c = k2 and the equation becomes

0 =
(

b

c
+

c

a

)(
1

x + k

)
+

(
a

c

)(
1

k2x + 1

)
=

g(x)
k(x + k)(k2x + 1)

where g(x) = (k5 + 2k2)x + (2k3 + 1). Now g(−k) = −(k3 − 1)(k3 + 1) and g(−1/k2) = k3 − 1. If k 6= −1,
then g(x) is divisible by neither (x + k) nor (k2x + 1) and the equation has a single real solution. If k = −1,
then b = c = −a and the equation reduces to 1/(x + 1) = 0 with no real solution.

Case 3. abc(a2− bc)(b2− ca)(c2−ab)(ab2 + bc2 + ca2) 6= 0. For x such that (cx+a)(ax+ b)(bx+ c) 6= 0,
the equation is equivalent to the quadratic equation f(x) = 0, where

f(x) = b(ax + b)(bx + c) + c(cx + a)(bx + c) + a(cx + a)(ax + b)

= (ab2 + bc2 + ca2)x2 + (a3 + b3 + c3 + 3abc)x + (b2c + c2a + a2b) .

The discriminant of this quadratic is given by

D ≡ (a3 + b3 + c3 + 3abc)2 − 4(ab2 + bc2 + ca2)(b2c + c2a + a2b)

= a6 + b6 + c6 − 3a2b2c2 − 2(a3b3 + b3c3 + c3a3) + 2abc(a3 + b3 + c3) .
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Since f(−a/c) = bc−2(a2 − bc)(b2 − ac) 6= 0, f(−b/a) 6= 0 and f(−c/b) 6= 0, the equation f(x) = 0 has
exactly the same solutions as the given equation. When D = 0, the equation has exactly one real solution.
When D 6= 0, it has either no real solutions or exactly two real solutions.

Case 4. abc(a2 − bc)(b2 − ca)(c2 − ab)(a3 + b3 + c3 + 3abc) 6= 0; ab2 + bc2 + ca2 = 0. In this case,

f(x) = (a3 + b3 + c3 + 3abc)x + (b2c + c2a + a2b)

and f(x) = 0 has exactly one real solution in the domain of the given equation.

Case 5. abc(a2− bc)(b2− ca)(c2− ab) 6= 0; a3 + b3 + c3 +3abc = ab2 + bc2 + ca2 = 0. In this case, there
is no real solution.

To sum up, we see that there is exactly one real solution if and only if one of the following conditions
holds:

(a) exactly one of a, b, c vanishes;
(b) exactly two of b/a, a/c, c/b are equal to a real number distinct from −1 and +1;
(c) none of a, b, c, a2 − bc, b2 − ac, c2 − ab, ab2 + bc2 + ca2 vanishes and D = 0;
(d) none of a, b, c, a2 − bc, b2 − ac, c2 − ab, a3 + b3 + c33abc vanishes and ab2 + bc2 + ca2 = 0.

Comment. The difficulty of this problems lies in sorting out the different possibilities in order to make
a comprehensive analysis. Most solvers simply put the left side of the equation over a common denominator
and analyzed the quadratic equation with realizing what might happen with the coefficients. For example,
one should be wary of the possibility that a/b = b/c, which means that ax + b is a constant multiple of
bx + c. In this case, putting the left side over a common cubic denominator introduces a spurious factor
proportional to ax + b; the least common denominator is in fact no more than a quadratic.

Another take on the problem is to look at the graph of the left side. If the three linear denominators
are not proportional, then there will be three vertical asymptotes, and one can analyze what the graph does
between these asymptotes. This is a nice exercise for you to work on and show that the results are consistent
with those obtained in the foregoing solution.

393. Determine three positive rational numbers x, y, z whose sum s is rational and for which x− s3, y − s3,
z − s3 are all cubes of rational numbers.

Solution 1. [A. Kong] Let x = a/k, y = b/k, z = c/k where a, b, c, k are all integers. Suppose that
b = ma and c = na. Then

x− s3 =
1
k3

[ak2 − (a + b + c)3] =
a

k3
[k2 − a2(1 + m + n)3]

y − s3 =
1
k3

[bk2 − (a + b + c)3] =
a

k3
[mk2 − a2(1 + m + n)3]

z − s3 =
1
k3

[ck2 − (a + b + c)3] =
a

k3
[nk2 − a2(1 + m + n)3] .

We try to make x = s3, so that k2 = a2(1 + m + n)3; for example, let a = 1 and 1 + m + n be a square.
When (a, k, m, n) = (1, 8, 1, 2), we obtain the successful example (x, y, z) = ( 1

8 , 1
8 , 1

4 ).

Solution 2. [C. Sun] Let x − s3 = a3, y − s3 = b3 and z − s3 = c3, so that s − 3s3 = a3 + b3 + c3. We
try to make a + b + c = x + y + z = s; then we would have

s(2s− 1)(2s + 1) = 4s3 − s = s3 − (s− 3s3)

= (a + b + c)3 − (a3 + b3 + c3) = 3(a + b)(b + c)(c + a) .

Try a+b = s, 3(b+c) = 2s+1 and c+a = 2s−1. Putting this with a+b+c = s yields c = (a+b+c)−(a+b) = 0,
a = (c + a)− c = 2s− 1 and b = 1

3 (2s + 1). Then

s = a + b + c =
8s− 2

3
=⇒ s =

2
5

.
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This yields (a, b, c) = (− 1
5 , 3

5 , 0) whence

(x, y, z) = (a3 + s3, b3 + s3, c3 + s3) =
(

7
125

,
35
125

,
8

125

)
.

It can be checked that this works.

Solution 3. [F. Barekat] An example is

(x, y, z) =
(

49
256

,
49
256

,
62
256

)
.

To get this, let x = p/u, y = q/v and z = r/w and write s in the form m/uvw. Then

m3 − pu2v3w3 = α3 , m3 − qv2u3w3 = β3 , m3 − rw2u3v3 = γ3

which leads to m(3m2−(uvw)2) = α3 +β3 +γ3. Playing around, we arrive at the possibility m = 5, uvw = 8
and α = β = 3, γ = 1.

Solution 4. We try to make

x− s3 =
u3s3

t3
, y − s3 =

v3s3

t3
, z − s3 =

w3s3

t3
,

which leads to

s− 3s3 = s3

(
u3 + v3 + w3

t3

)
and

1 = s2

(
u3 + v3 + w3

t3
+ 3

)
.

We select u, v, w to make the quantity in parentheses square (for example, we can try u3 + v3 + w3 = t3).

For example, (u, v, w, t, s) = (3, 4, 5, 6, 1/2) yields

(8x, 8y, 8z) =
(

243
216

,
280
216

,
341
216

)
and (u, v, w, t, s) = (3, 5, 6, 2, 1/7) yields

(343x, 343y, 343z) =
(

35
8

.
133
8

.
224
8

)
.

These check out.

394. The average age of the students in Ms. Ruler’s class is 17.3 years, while the average age of the boys is
17.5 years. Give a cogent argument to prove that the average age of the girls cannot also exceed 17.3
years.

Solution. Suppose that there are b boys and g girls and that the average age of the girls is a. Then the
sum of all the ages of the students in the class is

17.3(b + g) = 17.5b + ag

whence (17.3 − a)g = 0.2b. Since the right side as well as g are positive, 17.3 − a must also be positive.
Hence a < 17.3.
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