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381. Determine all polynomials f(x) such that, for some positive integer k,

f(xk)− x3f(x) = 2(x3 − 1)

for all values of x.

382. Given an odd number of intervals, each of unit length, on the real line, let S be the set of numbers that
are in an odd number of these intervals. Show that S is a finite union of disjoint intervals of total length
not less than 1.

383. Place the numbers 1, 2, · · · , 9 in a 3× 3 unit square so that
(a) the sums of numbers in each of the first two rows are equal;
(b) the sum of the numbers in the third row is as large as possible;
(c) the column sums are equal;
(d) the numbers in the last row are in descending order.

Prove that the solution is unique.

384. Prove that, for each positive integer n,

(3− 2
√

2)(17 + 12
√

2)n + (3 + 2
√

2)(17− 12
√

2)n − 2

is the square of an integer.

385. Determine the minimum value of the product (a + 1)(b + 1)(c + 1)(d + 1), given that a, b, c, d ≥ 0 and
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386. In a round-robin tournament with at least three players, each player plays one game against each other
player. The tournament is said to be competitive if it is impossible to partition the players into two sets,
each that each player in one set beat each player in the second set. Prove that, if a tournament is not
competitive, it can be made so by reversing the result of a single game.

387. Suppose that a, b, u, v are real numbers for which av − bu = 1. Prove that

a2 + u2 + b2 + v2 + au + bv ≥
√

3 .

Give an example to show that equality is possible. (Part marks will be awarded for a result that is
proven with a smaller bound on the right side.)
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