Solutions

318. Solve for integers z,y, z the system
l=x4y+z=a34+19>+2>.

[Note that the exponent of z on the right is 2, not 3.]
Solution 1. Substituting the first equation into the second yields that
4yt + 1= (+y) =1
which holds if and only if
0=(z+y)(@* -2y +¢°) + (z +)* = 2(z +y)
=@+ —azy+yP+axt+y—2)
=(1/2) e+ )z -y’ +(@+1)*+(y+1)* 6.

It is straightforward to check that the only possibilities are that either y = —z or (z,y) = (0,—-2),(—2,0) or
(z,y) = (-3,-2),(-2,-3) or (z,y) = (1,0),(0,1). Hence

(f, Y, Z) = (t» -, 1)7 (17 07 0)7 (07 ]-7 0)’ (_27 -3, 6)7 (_37 _27 6)7 (_27 07 3)7 (07 _2a 3)

where t is an arbitrary integer. These all check out.

Solution 2. As in Solution 1, we find that either x +y = 0,2 = 1 or 22 + (1 —y)z + (y* + y — 2) = 0.
The discriminant of the quadratic in x is

—3y? —6y+9=-3(y+1)>*+12,

which is nonnegative when |y + 1| < 4. Checking out the possibilities leads to the solution.

Solution 3.
(1—=2)(1+2)=1-22=2"+4°
= (z+y)llz+y)* = 3zyl = (1 - 2)[(1 - 2)* = 3] ,
whence either z = 1 or 3zy = (1 — 22+ 22) — (1 +2) = 2(z — 3). The former case yields (z,y, z) = (z, —z,1)
while the latter yields

1
r+y=1-z xy:§z(z—3).

Thus, we must have that z = 0 (mod 3) and that z,y are roots of the quadratic equation

z(z —3)

2 —(1-2)t

=0.

The discriminant of this equation is [12—(z—3)?]/3. Thus, the only possibilities are that z = 0, 3, 6; checking
these gives the solutions.

319. Suppose that a, b, ¢, z are real numbers for which abc # 0 and

b+ (1—-x)c  xzc+(1—-2)a  xa+(1—2x)b
a B b B c ’

Is it true that, necessarily, a = b = ¢?



Comment. There was an error in the original formulation of this problem, and it turns out that the three
numbers a, b, ¢ are not necessarily equal. Note that in the problem, a, b, ¢, x all have the same status. Some
solvers, incorrectly, took the given conditions as an identity in x, so that they assumed that the equations
held for some a, b, c and all x.

Solution 1. Suppose first that a +b+ ¢ # 0. Then the three equal fractions are equal to the sum of their
numerators divided by the sum of the denominators [why?]:

zla+b+e)+(1—2z)(a+b+c)

=1.
at+b+e

Hence a = zb+ (1—2)¢, b = 2c¢+ (1 —z)a, ¢ = za+ (1 — )b, from which z(b—c) = (a—¢), z(c—a) = (b—a),
x(a—b) = (c—b). Multiplying these three equations together yields that 3(b—c)(c—a)(a—b) = (a—c)(b—
a)(c — b). Therefore, either = —1 or at least two of a, b, ¢ are equal.

If # = —1, then a4+ b = 2¢, b+ ¢ = 2a and ¢ + a = 2b. This implies for example that a — ¢ = 2(c — a),
whence a = ¢. Similarly, a = b and b = ¢. Suppose on the other hand that, say, a = b; then b = ¢ and ¢ = a.

The remaining case is that a + b+ ¢ = 0. Then each entry and sum of pairs of entries is nonzero, and

za+(1—2)b xz(—a—>b)+(1—2x)a

—(a+b) b

= zab+ (1 — 2)b* = z(a + b)* — (1 — z)(a® + ab)
— (1 —x)(a® +ab+b*) = x(a® + ab+b?) .
Since 2(a? +ab+b?) = (a+b)2+a?>+b*> > 0,1 -2 = x and z = 1/2. But in this case, the equations become

b+c c+a a+bd

2a 2b 2¢

each member of which takes the value —1/2 for all a, b, ¢ for which a + b+ ¢ = 0.
Hence, the equations hold if and only if either a« = b = ¢ and « is arbitrary, or z = 1/2 and a+b+c¢ = 0.
Comment. On can get the first part another way. If d is the common value of the three fractions, then
b+ (1—2)c=da; zc+(l—z)a=db; xa+ (1—2x)b=dc.
Adding these yeilds that a + b+ c¢=d(a+ b+ ¢), whence d=1or a+ b+ c=0.
Solution 2. The first inequality leads to
b + (1 — 2)be = zac + (1 — x)a®

or
z(a® +b*) — z(a+b)c =a® — be .

Similarly
z(c* 4+ a®) —z(c+a)b=b* —ca ;

r(b* 4+ c*) —a(b+c)a=c* —ab.
Adding these three equations together leads to

22[(a—0)*+(b—c)* +(c—a))]=(a—b)?+(b—c)?+ (c—a)?.

Hence, either a =b=cor z =1/2.



If + = 1/2, then for some constant k,

b+c¢c c+a a+b_

a b c

k,

whence
—ka+b+c=a—kb+c=a+b—kc=0.

Add the three left members to get
(2—Fk)a+b+c¢)=0.

Therefore, k =2 ora+b+c=0. If k=2, then a = b= ¢, as in Solution 1. If a + b+ ¢ =0, then £k = —1
for any relevant values of a,b, c. Hence, eithera=b=corz=1/2and a4+ b+ c=0.

320. Let L and M be the respective intersections of the internal and external angle bisectors of the triangle
ABC at C and the side AB produced. Suppose that CL = CM and that R is the circumradius of
triangle ABC. Prove that

|AC|? + |BC|* = 4R? .

Solution 1. Since /LCM = 90° and CL = CM, we have that /CLM = /CML = 45°. Let /ACB = 26.
Then /CAB = 45° — 0 and /CBA = 45° 4+ 0. It follows that
|BC|*> 4 |AC|* = (2Rsin LCAB)* + (2Rsin LCBA)?
= 4R*(sin?(45° — 0) + sin?(45° + 0))
= 4R*(sin®(45° — 0) + cos?(45° — 0)) = 4R? .

Solution 2. [B. Braverman| ZABC is obtuse [why?]. Let AD be a diameter of the circumcircle of
triangle ABC. Then LADC = /CBM = 45° + /LCB (since ABCD is concyclic). Since ZACD = 90°,
/DAC = 45° — /LCB = /CAB. Hence, chords DC and CB, subtending equal angles at the circumference
of the circumcircle, are equal. Hence

4R? = |AC|* + |CD|? = |AC|*> + |BC|? .

321. Determine all positive integers k for which £/(*=7) is an integer.

Solution. When k = 1, the number is an integer. Suppose that 2 < k < 6. Then k£ — 7 < 0 and so
0< kY= =1 /(YT < 1

and the number is not an integer. When k = 7, the expression is undefined.

When k = 8, the number is equal to 8, while if £ = 9, the number is equal to 3. When k£ = 10, the
number is equal to 10'/3, which is not an integer [why?].

Suppose that & > 11. We establish by induction that & < 2¢=7. This is clearly true when k& = 11.
Suppose it holds for kK = m > 11. Then

m+1<2mTT 4 mTT = lmA =T

the desired result follows by induction. Thus, when k& > 11, 1 < k*/®*~7 < 2 and the number is not an
integer.

Thus, the number is an integer if and only if £ =1,8,9.

3



322. The real numbers u and v satisfy
u? —3u® 4+ 5u—17=0

and
=302 +50+11=0.

Determine u + v.
Solution 1. The equations can be rewritten
ud —3u?+5u—3=14,

v =3P +50-3=-14.
These can be rewritten as

(=172 +2u—1) =14,

(v—17°4+2w—-1)=-14.
Adding these equations yields that

0=(u—-1°4+@w-13+2u+v-2)
=(w+v-2u-12-(u-Dw-1)+@w-1>2+2].

Since the quadratic t? — st + s? is always positive [why?], we must have that u + v = 2.
Solution 2. Adding the two equations yields

0= (u®+v% =3 +v*) +5u+v)—6
= (u+v)[(u+v)? = 3uv] — 3[(u+v)* — 2uv] + 5(u+v) — 6
= [(u+v)® = 3(u+v)?+5(u+v) — 6] — 3uv(u+v—2)

= St o= D= v) + (=17 + (0~ 17 +4].

Since the second factor is positive, we must have that u + v = 2.

Solution 3. [N. Horeczky] Since x® — 322 + 52 = (z — 1)® + 2(x — 1) + 3 is an increasing function of x
(since x — 1 is increasing), the equation x3 — 322 4+ 52 — 17 = 0 has exactly one real solution, namely x = .

But
0=v3—302+50v+11

=w—-2°%+3(v—-2)2+5(v—2)+17
=—[(2-v)*=32-0v)?+52—v)—17] .
Thus = 2 — v satisfies 2% — 322 + 52 — 17 =0, so that 2 —v = v and u + v = 2.
Comment. One can see also that each of the two given equations has a unique real root by noting that

the sum of the squares of the roots, given by the cofficients, is equal to 32 —2 x 5 = —1.

Solution 4. [P. Shi] Let m and n be determined by v+ v = 2m and v — v = 2n. Then u = m + n,
v=m-—n, u?+0v2 =2m%+2n2, u? —v? = dmn, u® + uww +v2 = 3IM? +n?, u? —uv +v2 = m? + In?,
ud 4+ v® = 2m(m? + 3n?) and u® — v3 = 2n(3m? + n?). Adding the equations yields that

0= (u®+v%) —3(u®+v*) +5u+v)—6
=2m?® + 6mn® — 6m> — 6n* + 10m — 6
=6(m — 1)n? +2(m>® — 3m? + 5m — 3)
=6(m — 1)n? +2(m — 1)(m?* — 2m + 3)
=2m—1D)[3n*+ (m—-1)*+2].
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Hence m = 1.

323. Alfred, Bertha and Cedric are going from their home to the country fair, a distance of 62 km. They
have a motorcycle with sidecar that together accommodates at most 2 people and that can travel at a
maximum speed of 50 km/hr. Each can walk at a maximum speed of 5 km/hr. Is it possible for all
three to cover the 62 km distance within 3 hours?

Solution 1. We consider the following regime. A begins by walking while B and C set off on the
motorcycle for a time of ¢; hours. Then C dismounts from the motorcycle and continues walking, while B
drives back to pick up A for a time of ¢t hours. Finally, B and A drive ahead until they catch up with C,
taking a time of 3 hours. Suppose that all of this takes ¢t = t; + t2 + t3 hours.

The distance from the starting point to the point where B picks up A is given by
5(t1 + tQ) = 50(t1 — tg)

km, and the distance from the point where B drops off C' until the point where they all meet again is given
by
5(te +t3) = 50(t3 — ta) .

Hence 45t5 = 45t1 = 55ta, so that t1 = t3 = (11/9)t2 and so t = (31/9)t2 and
11 9 11

t1 = =t to = —t ty = —
1 ) L2 o B=3

31 31 b

The total distance travelled in the ¢ hours is equal to

650

kilometers. In three hours, they can travel 1950/31 = 60 4 (90/31) > 62 kilometers in this way, so that all
will reach the fair before the three hours are up.

Solution 2. Follow the same regime as in Solution 1. Let d be the distance from the start to the point
where B drops C' in kilometers. The total time for for C' to go from start to finish, namely

i 4 62 —d
50 5
hours, and we wish this to be no greater than 3. The condition is that d > 470/9.

The time for B to return to pick up A after dropping C' is 9d/550 hours in which he covers a distance
of 9d/11 km. The total distance travelled by the motorcycle is

9d 2d 18d + 682
d+ — 2——)= ——
+ 11 +(6 11) 11
km, and this is covered in
18d + 682
550

hours. To get A and B to their destinations on time, we wish this to not exceed 3; the condition for this is
that d < 484/9. Thus, we can get everyone to the fair on time if

470 484
—<d< —.
9 = 7 9

Thus, if d = 53, for example, we can achieve the desired journey.
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Solution 3. [D. Dziabenko] Suppose that B and C' take the motorcycle for exactly 47/45 hours while A
walks after them. After 47/45 hours, B leaves C to walk the rest of the way, while B drives back to pick up
A. C reaches the destination in exactly

62 — (47/45)50 47

5 45

hours. Since B and A start and finish at the same time, it suffices to check that that B reaches the fair on
time. When B drops C off, B and A are 47 km apart. It takes B 47/55 hours to return to pick up A. At

this point, they are now
4 4 2 1
62—5( 7+7> =62—47(0> = 5198

3

45 " 55 99) — 99
km from the fair, which they will reach in a further
5198 2599
99 x 50 2475

hours. The total travel time for A and B is

AT 47 1 a7 4
7+7+[625( T4 7)}

45 55 ' 50 45 ' 55
9x47 1+i 31 517+423+682 811
T 10x5(9 11 25 550 275

hours. This is less than three hours.

324. The base of a pyramid ABCDYV is a rectangle ABCD with |AB| = a, |[BC| =b and |[VA| = |[VB| =
|[VC| = |VD| = c. Determine the area of the intersection of the pyramid and the plane parallel to the
edge V A that contains the diagonal BD.

Solution 1. A dilation with centre C and factor 1/2 takes A to S, the centre of the square and V to M, the
midpoint of V'C. The plane of intersection is the plane that contains triangle BM D. Since BM is a median
of triangle BV C with sides c,c, b, its length is equal to 1v/2b% + ¢2 [why?]; similarly, |[DM| = 1v/2a% + ¢2.
Also, |BD| = va? + b%. Let § = /BMD. Then, by the law of Cosines,

2 —a?2-b?

cosf = ,
V202 + 2202 + ¢2

whence

\/402(a2 +b2) — (a® — b2)?
V202 + 2v/2a2 + 2

sinf =

The required area is

1 1
S| BM||DM|sin§ = g\/402(a2 +b2) — (a2 — b2)2 .

Comment. One can also use Heron’s formula to get the area of the triangle, but this is more labourious.
Another method is to calculate (1/2)|BD||M N|, where N is the foot of the perpendicular from M to BD,
Note that, when a # b, N is not the same as S [do you see why?]. If d = |BD| and = = |SN| and, say
|M B| < |MD], then

d ? d ?
IMN|> = |MB|? - (2 — a:) = |MDJ? - <2 +x>

whence
_ |MD]* - |MBJ?
T = 5y
If follows that
2a2b% — a* — b* 4 4a2c? + 4b%c?
16(a? + b2) ’

MNJ2 =



