Solutions

318. Solve for integers x, y, z the system

$$
1=x+y+z=x^{3}+y^{3}+z^{2}
$$

[Note that the exponent of z on the right is 2 , not 3 .]
Solution 1. Substituting the first equation into the second yields that

$$
x^{3}+y^{3}+[1-(x+y)]^{2}=1
$$

which holds if and only if

$$
\begin{aligned}
0 & =(x+y)\left(x^{2}-x y+y^{2}\right)+(x+y)^{2}-2(x+y) \\
& =(x+y)\left(x^{2}-x y+y^{2}+x+y-2\right) \\
& =(1 / 2)(x+y)\left[(x-y)^{2}+(x+1)^{2}+(y+1)^{2}-6\right]
\end{aligned}
$$

It is straightforward to check that the only possibilities are that either $y=-x$ or $(x, y)=(0,-2),(-2,0)$ or $(x, y)=(-3,-2),(-2,-3)$ or $(x, y)=(1,0),(0,1)$. Hence

$$
(x, y, z)=(t,-t, 1),(1,0,0),(0,1,0),(-2,-3,6),(-3,-2,6),(-2,0,3),(0,-2,3)
$$

where t is an arbitrary integer. These all check out.
Solution 2. As in Solution 1, we find that either $x+y=0, z=1$ or $x^{2}+(1-y) x+\left(y^{2}+y-2\right)=0$. The discriminant of the quadratic in x is

$$
-3 y^{2}-6 y+9=-3(y+1)^{2}+12
$$

which is nonnegative when $|y+1| \leq 4$. Checking out the possibilities leads to the solution.
Solution 3.

$$
\begin{aligned}
(1-z)(1+z) & =1-z^{2}=x^{3}+y^{3} \\
& =(x+y)\left[(x+y)^{2}-3 x y\right]=(1-z)\left[(1-z)^{2}-3 x y\right]
\end{aligned}
$$

whence either $z=1$ or $3 x y=\left(1-2 z+z^{2}\right)-(1+z)=z(z-3)$. The former case yields $(x, y, z)=(x,-x, 1)$ while the latter yields

$$
x+y=1-z \quad x y=\frac{1}{3} z(z-3) .
$$

Thus, we must have that $z \equiv 0(\bmod 3)$ and that x, y are roots of the quadratic equation

$$
t^{2}-(1-z) t+\frac{z(z-3)}{3}=0
$$

The discriminant of this equation is $\left[12-(z-3)^{2}\right] / 3$. Thus, the only possibilities are that $z=0,3,6$; checking these gives the solutions.
319. Suppose that a, b, c, x are real numbers for which $a b c \neq 0$ and

$$
\frac{x b+(1-x) c}{a}=\frac{x c+(1-x) a}{b}=\frac{x a+(1-x) b}{c}
$$

Is it true that, necessarily, $a=b=c$?

Comment. There was an error in the original formulation of this problem, and it turns out that the three numbers a, b, c are not necessarily equal. Note that in the problem, a, b, c, x all have the same status. Some solvers, incorrectly, took the given conditions as an identity in x, so that they assumed that the equations held for some a, b, c and all x.

Solution 1. Suppose first that $a+b+c \neq 0$. Then the three equal fractions are equal to the sum of their numerators divided by the sum of the denominators [why?]:

$$
\frac{x(a+b+c)+(1-x)(a+b+c)}{a+b+c}=1 .
$$

Hence $a=x b+(1-x) c, b=x c+(1-x) a, c=x a+(1-x) b$, from which $x(b-c)=(a-c), x(c-a)=(b-a)$, $x(a-b)=(c-b)$. Multiplying these three equations together yields that $x^{3}(b-c)(c-a)(a-b)=(a-c)(b-$ $a)(c-b)$. Therefore, either $x=-1$ or at least two of a, b, c are equal.

If $x=-1$, then $a+b=2 c, b+c=2 a$ and $c+a=2 b$. This implies for example that $a-c=2(c-a)$, whence $a=c$. Similarly, $a=b$ and $b=c$. Suppose on the other hand that, say, $a=b$; then $b=c$ and $c=a$.

The remaining case is that $a+b+c=0$. Then each entry and sum of pairs of entries is nonzero, and

$$
\begin{aligned}
& \frac{x a+(1-x) b}{-(a+b)}=\frac{x(-a-b)+(1-x) a}{b} \\
& \Longrightarrow x a b+(1-x) b^{2}=x(a+b)^{2}-(1-x)\left(a^{2}+a b\right) \\
& \Longrightarrow(1-x)\left(a^{2}+a b+b^{2}\right)=x\left(a^{2}+a b+b^{2}\right) .
\end{aligned}
$$

Since $2\left(a^{2}+a b+b^{2}\right)=(a+b)^{2}+a^{2}+b^{2}>0,1-x=x$ and $x=1 / 2$. But in this case, the equations become

$$
\frac{b+c}{2 a}=\frac{c+a}{2 b}=\frac{a+b}{2 c}
$$

each member of which takes the value $-1 / 2$ for all a, b, c for which $a+b+c=0$.
Hence, the equations hold if and only if either $a=b=c$ and x is arbitrary, or $x=1 / 2$ and $a+b+c=0$.
Comment. On can get the first part another way. If d is the common value of the three fractions, then

$$
x b+(1-x) c=d a ; \quad x c+(1-x) a=d b ; \quad x a+(1-x) b=d c .
$$

Adding these yeilds that $a+b+c=d(a+b+c)$, whence $d=1$ or $a+b+c=0$.
Solution 2 . The first inequality leads to

$$
x b^{2}+(1-x) b c=x a c+(1-x) a^{2}
$$

or

$$
x\left(a^{2}+b^{2}\right)-x(a+b) c=a^{2}-b c .
$$

Similarly

$$
\begin{aligned}
& x\left(c^{2}+a^{2}\right)-x(c+a) b=b^{2}-c a ; \\
& x\left(b^{2}+c^{2}\right)-x(b+c) a=c^{2}-a b .
\end{aligned}
$$

Adding these three equations together leads to

$$
2 x\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]=(a-b)^{2}+(b-c)^{2}+(c-a)^{2} .
$$

Hence, either $a=b=c$ or $x=1 / 2$.

If $x=1 / 2$, then for some constant k,

$$
\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=k
$$

whence

$$
-k a+b+c=a-k b+c=a+b-k c=0 .
$$

Add the three left members to get

$$
(2-k)(a+b+c)=0
$$

Therefore, $k=2$ or $a+b+c=0$. If $k=2$, then $a=b=c$, as in Solution 1. If $a+b+c=0$, then $k=-1$ for any relevant values of a, b, c. Hence, either $a=b=c$ or $x=1 / 2$ and $a+b+c=0$.
320. Let L and M be the respective intersections of the internal and external angle bisectors of the triangle $A B C$ at C and the side $A B$ produced. Suppose that $C L=C M$ and that R is the circumradius of triangle $A B C$. Prove that

$$
|A C|^{2}+|B C|^{2}=4 R^{2}
$$

Solution 1. Since $\angle L C M=90^{\circ}$ and $C L=C M$, we have that $\angle C L M=\angle C M L=45^{\circ}$. Let $\angle A C B=2 \theta$. Then $\angle C A B=45^{\circ}-\theta$ and $\angle C B A=45^{\circ}+\theta$. It follows that

$$
\begin{aligned}
|B C|^{2}+|A C|^{2} & =(2 R \sin \angle C A B)^{2}+(2 R \sin \angle C B A)^{2} \\
& =4 R^{2}\left(\sin ^{2}\left(45^{\circ}-\theta\right)+\sin ^{2}\left(45^{\circ}+\theta\right)\right) \\
& =4 R^{2}\left(\sin ^{2}\left(45^{\circ}-\theta\right)+\cos ^{2}\left(45^{\circ}-\theta\right)\right)=4 R^{2} .
\end{aligned}
$$

Solution 2. [B. Braverman] $\angle A B C$ is obtuse [why?]. Let $A D$ be a diameter of the circumcircle of triangle $A B C$. Then $\angle A D C=\angle C B M=45^{\circ}+\angle L C B$ (since $A B C D$ is concyclic). Since $\angle A C D=90^{\circ}$, $\angle D A C=45^{\circ}-\angle L C B=\angle C A B$. Hence, chords $D C$ and $C B$, subtending equal angles at the circumference of the circumcircle, are equal. Hence

$$
4 R^{2}=|A C|^{2}+|C D|^{2}=|A C|^{2}+|B C|^{2} .
$$

321. Determine all positive integers k for which $k^{1 /(k-7)}$ is an integer.

Solution. When $k=1$, the number is an integer. Suppose that $2 \leq k \leq 6$. Then $k-7<0$ and so

$$
0<k^{1 /(k-7)}=1 /\left(k^{1 / 7-k}\right)<1
$$

and the number is not an integer. When $k=7$, the expression is undefined.
When $k=8$, the number is equal to 8 , while if $k=9$, the number is equal to 3 . When $k=10$, the number is equal to $10^{1 / 3}$, which is not an integer [why?].

Suppose that $k \geq 11$. We establish by induction that $k<2^{k-7}$. This is clearly true when $k=11$. Suppose it holds for $k=m \geq 11$. Then

$$
m+1<2^{m-7}+2^{m-7}=2^{(m+1)-7}
$$

the desired result follows by induction. Thus, when $k \geq 11,1<k^{1 /(k-7)}<2$ and the number is not an integer.

Thus, the number is an integer if and only if $k=1,8,9$.
322. The real numbers u and v satisfy

$$
u^{3}-3 u^{2}+5 u-17=0
$$

and

$$
v^{3}-3 v^{2}+5 v+11=0
$$

Determine $u+v$.
Solution 1. The equations can be rewritten

$$
\begin{gathered}
u^{3}-3 u^{2}+5 u-3=14 \\
v^{3}-3 v^{2}+5 v-3=-14
\end{gathered}
$$

These can be rewritten as

$$
\begin{gathered}
(u-1)^{3}+2(u-1)=14 \\
(v-1)^{3}+2(v-1)=-14
\end{gathered}
$$

Adding these equations yields that

$$
\begin{aligned}
0 & =(u-1)^{3}+(v-1)^{3}+2(u+v-2) \\
& =(u+v-2)\left[(u-1)^{2}-(u-1)(v-1)+(v-1)^{2}+2\right]
\end{aligned}
$$

Since the quadratic $t^{2}-s t+s^{2}$ is always positive [why?], we must have that $u+v=2$.
Solution 2. Adding the two equations yields

$$
\begin{aligned}
0 & =\left(u^{3}+v^{3}\right)-3\left(u^{2}+v^{2}\right)+5(u+v)-6 \\
& =(u+v)\left[(u+v)^{2}-3 u v\right]-3\left[(u+v)^{2}-2 u v\right]+5(u+v)-6 \\
& =\left[(u+v)^{3}-3(u+v)^{2}+5(u+v)-6\right]-3 u v(u+v-2) \\
& =\frac{1}{2}(u+v-2)\left[(u-v)^{2}+(u-1)^{2}+(v-1)^{2}+4\right] .
\end{aligned}
$$

Since the second factor is positive, we must have that $u+v=2$.
Solution 3. [N. Horeczky] Since $x^{3}-3 x^{2}+5 x=(x-1)^{3}+2(x-1)+3$ is an increasing function of x (since $x-1$ is increasing), the equation $x^{3}-3 x^{2}+5 x-17=0$ has exactly one real solution, namely $x=u$. But

$$
\begin{aligned}
0 & =v^{3}-3 v^{2}+5 v+11 \\
& =(v-2)^{3}+3(v-2)^{2}+5(v-2)+17 \\
& =-\left[(2-v)^{3}-3(2-v)^{2}+5(2-v)-17\right]
\end{aligned}
$$

Thus $x=2-v$ satisfies $x^{3}-3 x^{2}+5 x-17=0$, so that $2-v=u$ and $u+v=2$.
Comment. One can see also that each of the two given equations has a unique real root by noting that the sum of the squares of the roots, given by the cofficients, is equal to $3^{2}-2 \times 5=-1$.

Solution 4. [P. Shi] Let m and n be determined by $u+v=2 m$ and $u-v=2 n$. Then $u=m+n$, $v=m-n, u^{2}+v^{2}=2 m^{2}+2 n^{2}, u^{2}-v^{2}=4 m n, u^{2}+u v+v^{2}=3 m^{2}+n^{2}, u^{2}-u v+v^{2}=m^{2}+3 n^{2}$, $u^{3}+v^{3}=2 m\left(m^{2}+3 n^{2}\right)$ and $u^{3}-v^{3}=2 n\left(3 m^{2}+n^{2}\right)$. Adding the equations yields that

$$
\begin{aligned}
0 & =\left(u^{3}+v^{3}\right)-3\left(u^{2}+v^{2}\right)+5(u+v)-6 \\
& =2 m^{3}+6 m n^{2}-6 m^{2}-6 n^{2}+10 m-6 \\
& =6(m-1) n^{2}+2\left(m^{3}-3 m^{2}+5 m-3\right) \\
& =6(m-1) n^{2}+2(m-1)\left(m^{2}-2 m+3\right) \\
& =2(m-1)\left[3 n^{2}+(m-1)^{2}+2\right]
\end{aligned}
$$

Hence $m=1$.
323. Alfred, Bertha and Cedric are going from their home to the country fair, a distance of 62 km . They have a motorcycle with sidecar that together accommodates at most 2 people and that can travel at a maximum speed of $50 \mathrm{~km} / \mathrm{hr}$. Each can walk at a maximum speed of $5 \mathrm{~km} / \mathrm{hr}$. Is it possible for all three to cover the 62 km distance within 3 hours?

Solution 1. We consider the following regime. A begins by walking while B and C set off on the motorcycle for a time of t_{1} hours. Then C dismounts from the motorcycle and continues walking, while B drives back to pick up A for a time of t_{2} hours. Finally, B and A drive ahead until they catch up with C, taking a time of t_{3} hours. Suppose that all of this takes $t=t_{1}+t_{2}+t_{3}$ hours.

The distance from the starting point to the point where B picks up A is given by

$$
5\left(t_{1}+t_{2}\right)=50\left(t_{1}-t_{2}\right)
$$

km , and the distance from the point where B drops off C until the point where they all meet again is given by

$$
5\left(t_{2}+t_{3}\right)=50\left(t_{3}-t_{2}\right)
$$

Hence $45 t_{3}=45 t_{1}=55 t_{2}$, so that $t_{1}=t_{3}=(11 / 9) t_{2}$ and so $t=(31 / 9) t_{2}$ and

$$
t_{1}=\frac{11}{31} t, \quad t_{2}=\frac{9}{31} t, \quad t_{3}=\frac{11}{31} t
$$

The total distance travelled in the t hours is equal to

$$
50 t_{1}+5\left(t_{2}+t_{3}\right)=\frac{650}{31}
$$

kilometers. In three hours, they can travel $1950 / 31=60+(90 / 31)>62$ kilometers in this way, so that all will reach the fair before the three hours are up.

Solution 2. Follow the same regime as in Solution 1. Let d be the distance from the start to the point where B drops C in kilometers. The total time for for C to go from start to finish, namely

$$
\frac{d}{50}+\frac{62-d}{5}
$$

hours, and we wish this to be no greater than 3 . The condition is that $d \geq 470 / 9$.
The time for B to return to pick up A after dropping C is $9 d / 550$ hours in which he covers a distance of $9 \mathrm{~d} / 11 \mathrm{~km}$. The total distance travelled by the motorcycle is

$$
d+\frac{9 d}{11}+\left(62-\frac{2 d}{11}\right)=\frac{18 d+682}{11}
$$

km , and this is covered in

$$
\frac{18 d+682}{550}
$$

hours. To get A and B to their destinations on time, we wish this to not exceed 3 ; the condition for this is that $d \leq 484 / 9$. Thus, we can get everyone to the fair on time if

$$
\frac{470}{9} \leq d \leq \frac{484}{9}
$$

Thus, if $d=53$, for example, we can achieve the desired journey.

Solution 3. [D. Dziabenko] Suppose that B and C take the motorcycle for exactly $47 / 45$ hours while A walks after them. After $47 / 45$ hours, B leaves C to walk the rest of the way, while B drives back to pick up A. C reaches the destination in exactly

$$
\frac{62-(47 / 45) 50}{5}+\frac{47}{45}=3
$$

hours. Since B and A start and finish at the same time, it suffices to check that that B reaches the fair on time. When B drops C off, B and A are 47 km apart. It takes $B 47 / 55$ hours to return to pick up A. At this point, they are now

$$
62-5\left(\frac{47}{45}+\frac{47}{55}\right)=62-47\left(\frac{20}{99}\right)=\frac{5198}{99}
$$

km from the fair, which they will reach in a further

$$
\frac{5198}{99 \times 50}=\frac{2599}{2475}
$$

hours. The total travel time for A and B is

$$
\begin{aligned}
\frac{47}{45} & +\frac{47}{55}+\frac{1}{50}\left[62-5\left(\frac{47}{45}+\frac{47}{55}\right)\right] \\
& =\frac{9 \times 47}{10 \times 5}\left[\frac{1}{9}+\frac{1}{11}\right]+\frac{31}{25}=\frac{517+423+682}{550}=\frac{811}{275}
\end{aligned}
$$

hours. This is less than three hours.
324. The base of a pyramid $A B C D V$ is a rectangle $A B C D$ with $|A B|=a,|B C|=b$ and $|V A|=|V B|=$ $|V C|=|V D|=c$. Determine the area of the intersection of the pyramid and the plane parallel to the edge $V A$ that contains the diagonal $B D$.

Solution 1. A dilation with centre C and factor $1 / 2$ takes A to S, the centre of the square and V to M, the midpoint of $V C$. The plane of intersection is the plane that contains triangle $B M D$. Since $B M$ is a median of triangle $B V C$ with sides c, c, b, its length is equal to $\frac{1}{2} \sqrt{2 b^{2}+c^{2}}$ [why?]; similarly, $|D M|=\frac{1}{2} \sqrt{2 a^{2}+c^{2}}$. Also, $|B D|=\sqrt{a^{2}+b^{2}}$. Let $\theta=\angle B M D$. Then, by the law of Cosines,

$$
\cos \theta=\frac{c^{2}-a^{2}-b^{2}}{\sqrt{2 b^{2}+c^{2}} \sqrt{2 a^{2}+c^{2}}}
$$

whence

$$
\sin \theta=\frac{\sqrt{4 c^{2}\left(a^{2}+b^{2}\right)-\left(a^{2}-b^{2}\right)^{2}}}{\sqrt{2 b^{2}+c^{2}} \sqrt{2 a^{2}+c^{2}}}
$$

The required area is

$$
\frac{1}{2}|B M||D M| \sin \theta=\frac{1}{8} \sqrt{4 c^{2}\left(a^{2}+b^{2}\right)-\left(a^{2}-b^{2}\right)^{2}}
$$

Comment. One can also use Heron's formula to get the area of the triangle, but this is more labourious. Another method is to calculate $(1 / 2)|B D \| M N|$, where N is the foot of the perpendicular from M to $B D$, Note that, when $a \neq b, N$ is not the same as S [do you see why?]. If $d=|B D|$ and $x=|S N|$ and, say $|M B| \leq|M D|$, then

$$
|M N|^{2}=|M B|^{2}-\left(\frac{d}{2}-x\right)^{2}=|M D|^{2}-\left(\frac{d}{2}+x\right)^{2}
$$

whence

$$
x=\frac{|M D|^{2}-|M B|^{2}}{2 d}
$$

If follows that

$$
|M N|^{2}=\frac{2 a^{2} b^{2}-a^{4}-b^{4}+4 a^{2} c^{2}+4 b^{2} c^{2}}{16\left(a^{2}+b^{2}\right)}
$$

