
Solutions

283. (a) Determine all quadruples (a, b, c, d) of positive integers for which the greatest common divisor of its
elements is 1,

a

b
=

c

d

and a + b + c = d.

(b) Of those quadruples found in (a), which also satisfy

1
b

+
1
c

+
1
d

=
1
a

?

(c) For quadruples (a, b, c, d) of positive integers, do the conditions a+b+c = d and (1/b)+(1/c)+(1/d) =
(1/a) together imply that a/b = c/d?

Solution 1. (a) Suppose that the conditions on a, b, c, d are satisfied. Note that b and c have symmetric
roles. Since ad = bc, if b and c were both even, then either a or d would be even, whence both would be
even (since a + b + c = d), contradicting the fact that the greatest common divisor of a, b, c, d is equal to 1.
Hence, at most one of b and c is even.

Suppose, if possible, b and c were both odd. Then a and d would be odd as well. If b ≡ c (mod 4), then
bc ≡ 1 and b + c ≡ 2 (mod 4), whence ad ≡ a(a + 2) ≡ 3 6≡ bc (mod 4). If b ≡ c + 2 (mod 4), it can similarly
be shown that ad 6≡ bc (mod 4), In either case, we get an untenable conclusion. Hence, exactly one of b and
c is even and the other is odd.

Without loss of generality, we may suppose that a and b have opposite parity. Let g be the greatest
common divisor of a and b, so that a = gu and b = gv for some coprime pair (u, v) of positive integers with
opposite parity. Since d > c, it follows that b > a and v > u. Let w = v − u.

Since
b

a
=

a + b + c

c
=

a + b

c
+ 1 ,

it follows that
b− a

a(b + a)
=

1
c

whence

c =
gu(u + v)

w
and d =

gv(u + v)
w

.

Since the greatest common divisor of u and v is 1, w has no positive divisor in common with either u or v,
save 1. Any common divisor of w and u + v must divide 2u = (u + v)− (v − u) and 2v = (u + v) + (v − u);
such a common divisor equals 1. Since u and v have opposite parity and so w is odd, w must divide g. Since
the greatest common divisor of a, b, c, d is equal to 1, we must have that g = w. Hence

(a, b, c, d) = (u(v − u), v(v − u), u(v + u), v(v + u))

where u and v are coprime with opposite parity. Interchanging, the roles of b and c leads also to

(a, b, c, d) = (u(v − u), u(v + u), v(v − u), v(v + u))

with u, v coprime of opposite parity. On the other hand, any quadruples of this type satisfy the condition.

(b)
1
b

+
1
c

+
1
d

=
1

v(v − u)
+

1
u(v + u)

+
1

v(v + u)

=
1

v(v − u)
+

1
uv

=
u + (v − u)
uv(v − u)

=
1

v − u
=

1
a

.
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(c) Note that the conditions imply that d−a and b+c are nonzero. The conditions yield that d−a = b+c
and (1/a)− (1/d) = (1/b) + (1/c). The second of these can be rewritten

ad

d− a
=

bc

b + c

so that ad = bc. Thus, all quadruples imply the required condition.

Solution 2. (a) [M. Lipnowski] Let a/b = c/d = r/s where the greatest common divisor of r and s is
equal to 1. Then a = hr, b = hs, c = kr, d = ks. Since the greatest common divisor of a, b, c, d equals 1, the
greatest common divisor of h and k is 1. From a + b + c = d, we have that (h + k)r = (k − h)s. Observe
that gcd(h + k, k − h) = 1 when h and k have opposite parity and gcd(h + k, k − h) = 2 when h and k are
both odd. (Why?)

Thus, when h and k have oppposite parity, r = k − h, s = k + h and

(a, b, c, d) = (h(k − h), h(k + h), k(k − h), k(k + h))

and, when h and k are both odd, then r = 1
2 (k − h), s = 1

2 (k + h) and

(a, b, c, d) = ((1/2)h(k − h), (1/2)h(k + h), (1/2)k(k − h), (1/2)k(k + h)) .

It can be checked that these always work. (Collate these with the result given in Solution 1.)

(b) Since a/b = c/(a + b + c), c = a(a + b)/(b− a) and d = (a + b) + [a(a + b)/(b− a)] = b(a + b)/(b− a).
Hence

1
b

+
1
c

+
1
d

=
1
b

+
b− a

a + b

(
1
a

+
1
b

)
=

1
b

+
b− a

ab
=

1
a

.

(c) [M. Lipnowski]
1
b

+
1
c

+
1

a + b + c
=

1
a

is equivalent to
0 = bc(a + b + c)− a(b + c)(a + b + c)− abc

= (b + c)(bc− a2 − ab− ac) ,

which in turn is equivalent to

0 = bc− a2 − ab− ac ⇐⇒ bc = a(a + b + c) = ad .

284. Suppose that ABCDEF is a convex hexagon for which 6 A + 6 C + 6 E = 360◦ and

AB

BC
· CD

DE
· EF

FA
= 1 .

Prove that
AB

BF
· FD

DE
· EC

CA
= 1 .

Solution 1. [A. Zhang] Since the hexagon is convex, all its angles are less than 180◦. A dilation of
factor |CD|/|DE| followed by a rotation, both with centre D, takes E to C and F to a point G so that
∆DCG ∼ ∆DEF , 6 DEF = 6 DCG and DE : EF : FD = DC : CG : GD. Since DE : DC = FD : GD
and 6 EDC = 6 FDG, ∆EDC ∼ ∆FDC and DE : DC : CE = FD : DG : GF . Now

6 DCG + 6 BCD = 6 DEF + 6 BCD = 360◦ − 6 FAB > 180◦
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so that C lies within the triangle BDG and 6 BCG = 360◦ − (6 DCG + 6 BCD) = 6 FAB.

Also,
CG

CD
=

EF

DE
=

AF

AB
· BC

CD

so that CG : BC = AF : AB, with the result that ∆BCG ∼ ∆BAF , AB : BF : FA = CB : BG : GC
and 6 FBG = 6 ABC. From the equality of these angles and AB : CB = BF : BG, we have that
∆ABC ∼ ∆FBG and AB : BC : CA = FB : BG : GF . Hence

AB

BF
· FD

DE
· EC

CA
=

CA

GF
· GF

CE
· CE

CA
= 1

as desired.

Solution 2. [T. Yin] Lemma. Let ABCD be a convex quadrilateral with a, b, c, d, p, q the respective
lengths of AB,BC, CD,DA,AC and BD. Then

p2q2 = (ac + bd)2 − 4abcd cos2 θ

where 2θ = 6 A + 6 C.

Proof of Lemma. Locate E within the quadrilateral so that 6 EDC = 6 ADB and 6 ECD = 6 ABD.
Then ∆ABD ∼ ∆ECD whence ac = qx where x is the length of EC. Now 6 ADE = 6 BDC and AD :
DE = BD : CD whence ∆ADE ∼ ∆BDC and bd = qy with y the length of AE.

Hence abcd = q2xy and ac + bd = q(x + y). Therefore,

a2c2 + b2d2 + 2abcd = q2(x2 + 2xy + y2) = q2(x2 + y2) + 2abcd

which reduces to a2c2 + b2d2 = q2(x2 + y2).

Since 6 DEC = 6 BAD and 6 AED = 6 BCD,

6 AEC = 6 AED + 6 DEC = 6 C + 6 A = 2θ .

By the law of cosines,

p2 = x2 + y2 − 2xy cos 2θ = x2 + y2 − 2xy(2cos2θ − 1) =⇒

a2c2 + b2d2 = p2q2 + 4q2xy cos2 θ − 2q2xy

= p2q2 + 4abcd cos2 θ − 2abcd

so that the desired result follows. ♠

Note that, when 6 A+ 6 C = 180◦, then we get Ptolemy’s Theorem. Consider the hexagon of the problem
with |AB| = a, |BC| = b, |CD| = c, |DE| = d, |EF | = e, |FA| = f , |BF | = g, |CA| = h, |CF | = m,
|DF | = u and |CE| = v. We are given that ace = bdf and need to prove that auv = dgh.

From the lemma applied to ABDF , we obtain that

g2h2 = a2m2 + 2abfm + b2f2 − 4abfm cos2 α

where 2α = 6 BAC + 6 BCF . Applying the lemma to CDEF yields that

u2v2 = d2m2 + 2cdem + c2e2 − 4cdem cos2 β

where 2β = 6 FCD + 6 DEF . Since 6 A + 6 C + 6 E = 360◦, α + β = 180◦ and cos2 α = cos2 β. Finally,

d2g2h2 − a2u2v2 = (a2d2m2 + 2abd2fm + b2d2f2 − 4abd2fm cos2 α)

− (a2d2m2 + 2a2cdem + a2c2e2 − 4a2cdem cos2 β)

= 2adm(bdf − ace) + (b2d2f2 − a2c2e2)− 4adm(bdf − ace) cos2 α = 0 ,
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whence auv = dgh as required.

Solution 3. [Y. Zhao] The proof uses inversion in a circle and directed angles. Recall that, if O is the
centre of a circle of radius r, then inversion is that involution X ↔ X ′ for which X ′ is on the ray from O
through X and OX · OX ′ = r2. It is not too hard to check using similar triangles that 6 OPQ = 6 OQ′P ′

and using the law of cosines that P ′Q′ = PQ · (r2/(OP · OQ)). For this problem, we make F the centre of
the inversion. Then

360◦ = 6 FAB + 6 BCD + 6 DEF = 6 FAB + 6 BCF + 6 FCD + 6 DEF

= 6 A′B′F + 6 FB′C ′ + 6 C ′D′F + 6 FD′E′ = 6 A′B′C ′ + 6 C ′D′E′

whence 6 C ′B′A′ = 6 C ′D′E′.

In the following, we suppress the factor r2. We obtain that

A′B′

B′C ′ ·
C ′D′

D′E′ =
(

AB

FA · FB
· FB · FC

BC

)
·
(

CD

FC · FD
· FD · FE

DE

)
=

AB

FA
· CD

BC
· EF

DE
= 1

so that A′B′ : B′C ′ = D′E′ : C ′D′. This, along with 6 C ′B′A′ = 6 C ′D′E′ implies that ∆C ′B′A′ ∼
∆C ′D′E′, so that A′B′ : A′C ′ = D′E′ : E′C ′ or A′B′ · E′C ′ = A′C ′ · E′D′.

Therefore

AB

BF
· FD

DE
· EC

CA
=

(
A′B′

FA′ · FB′ ·B
′F

)
·
(

1
F ′D′ ·

FD′ · FE′

D′E′

)
·
(

E′C ′

FE′ · FC ′ ·
FC ′ · FA′

C ′A′

)
=

A′B′

A′C ′ ·
E′C ′

E′D′ = 1 ,

as desired.

Solution 4. [M. Abdeh-Kolahchi] Let A,B,C, D, E, F be points in the complex plane with

B −A = a = |a|(cos α + i sinα)

C −B = b = |b|(cos β + i sinβ)

D − C = c = |c|(cos γ + i sin γ)

E −D = d = |d|(cos δ + i sin δ)

F − E = e = |e|(cos ε + i sin ε)

A− F = f = |f |(cos φ + i sinφ) .

Modulo 360◦, we have that
6 A = 6 FAB ≡ 180◦ − (φ− α)

6 C = 6 BCD ≡ 180◦ − (δ − β)

6 E = 6 DEF ≡ 180◦ − (ε− γ) .

Also a + b + c + d + e + f = 0 and

ace

bdf
=
|a||c||e|(cos α + i sinα)(cos γ + i sin γ)(cos ε + i sin ε)
|b||d||f |(cos β + i sinβ)(cos δ + i sin δ)(cos φ + i sinφ)

= 1(cos(α− φ + δ − β + ε− γ))
= cos( 6 A− 180◦ + 6 C − 180◦ + 6 E − 180◦) = cos(−180◦) = −1 ,
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whence ace + bdf = 0. Therefore,

0 = ad(a + b + c + d + e + f) + (ace + bdf) = a(d + e)(c + d) + d(a + f)(a + b) ,

whence
a(d + e)(c + d)
d(a + f)(a + b)

= −1 =⇒ |a|
|a + f |

· |d + e|
|d|

· |c + d|
|a + b|

= 1

=⇒ AB

BF
· FD

DE
· EC

CA
= 1 .

285. (a) Solve the following system of equations:

(1 + 42x−y)(51−2x+y) = 1 + 22x−y+1 ;

y2 + 4x = log2(y
2 + 2x + 1) .

(b) Solve for real values of x:
3x · 8x/(x+2) = 6 .

Express your answers in a simple form.

Solution. Let u = 2x− y. Then

(1 + 4u)(51−u) = 1 + 2u+1

so that

5u−1 =
1 + 22u

1 + 2u+1
= 2u−1 +

1− 2u−1

1 + 2u+1
.

Thus,

5u−1 − 2u−1 =
1− 2u−1

1 + 2u+1
.

When u > 1, the left side of this equation is positive while the right is negative; when u < 1, the reverse is
true. Hence, the only possible solution is u = 1, which checks out.

Substituting for x leads to
y2 + 2y + 2 = log2(y

2 + y + 2) .

Since y2 + y + 2 = (y + 1
2 )2 + 7

4 > 0, the right side is defined and is in fact positive. Let

φ(y) = y2 + 2y + 2− log2(y
2 + y + 2) .

Then

φ′(y) =
2y(y + 1)2 + 4(y + 1)− (log2 e)(2y + 1)

y2 + y + 2
.

φ′(y) = 0 ⇐⇒ (y + 1)2 = −
(

(2− log2 e) +
4− log2 e

2y

)
.

From the graphs of the two sides of the equation, we see that the left side and the right side have opposite
signs when y > 0 and become equal for exactly one value of y. It follows that φ′(y) changes sign exactly once
so that φ(y) decreases and then increases. Thus, φ(y) vanishes at most twice. Indeed, φ(−2) = φ(−1) = 0,
and so (x, y) = (0,−1), (− 1

2 ,−2) are the only solutions of the equation.

(b) The equation can be rewritten

1 = 31−x22(1−x)/(x+2)
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whence
0 = (1− x)(log 3 + (2/(x + 2)) log 2) .

Thus, either x = 1 or 0 = log2 3 + 2/(x + 2). The latter leads to

x = −2(1 + log3 2) = −2(log3 6) = − log3 36 .

286. Construct inside a triangle ABC a point P such that, if X, Y , Z are the respective feet of the per-
pendiculars from P to BC, CA, AB, then P is the centroid (intersection of the medians) of triangle
XY Z.

Solution 1. Let AU , BV , CW be the medians of triangle ABC and let AL, BM , CN be their respective
images in the bisectors of angles A, B, C. Since AU , BV , CW intersect in a common point (the centroid of
∆ABC). AL, BM , CN must intersect in a common point P . This follows from the sine version of Ceva’s
theorem and its converse. Let X, Y , Z be the respective feet of the perpendiculars from P to sides BC,
AC, AB.

Let I, J , K be the respective feet of the perpendiculars from the centroid G to the sides BC, AC
and AB. The quadrilateral PY AZ is the image of the quadrilateral GJAK under a reflection in the angle
bisector of A followed by a dilation with centre A and factor AP/AG. Hence PY : PZ = GK : GI. Since
triangles AGB and AGC have the same area,

AB ·GK = AC ·GJ =⇒ PY : PZ = AC : AB = b : c .

Applying a similar argument involving PX, we find that

PX : PY : PZ = a : b : c .

Let PX = ae, PY = be, PZ = ce. Then, since 6 XPY + 6 ACB = 180◦,

[PXY ] =
1
2
abe2 sin 6 XPY = e2

(
1
2
ab sinC

)
= e2[ABC] .

Similarly, [PY Z] = [PZX] = e2[ABC] = [PXY ], whence P must be the centroid of triangle XY Z.

Solution 2. [M. Lipnowski] Erect squares ARSB, BTUC, CV WA externally on the edges of the triangle.
Suppose that RS and V W intersect at A′, RS and TU at B′ and TU and UW at C ′.

We establish that AA′, BB′ and CC ′ are concurrent. They are cevians in the triangle A′B′C ′. We have
that

sin 6 RA′A

sin 6 WA′A
· sin 6 V C ′C

sin 6 UC ′C
· sin 6 TB′B

sin 6 SB′B

=
(AR/AA′)
(AW/AA′)

· (V C/CC ′)
(UC/CC ′)

· (TB/BB′)
(BS/BB′)

=
AR

AW
· V C

UC
· TB

BC
=

c

b
· b

a
· a

c
= 1 .

Hence AA′, BB′, CC ′ intersect in a point P by the converse to Ceva’s Theorem. P is the desired point.

To prove that this works, we first show that PX : PY : PZ = a : b : c, and then that [XPY ] = [Y PZ] =
[ZPX]. Observe that, since ∆PZA ∼ ∆ARA′ and ∆PY A ∼ ∆AWA′,

PY

PZ
=

PY (AA′/PA)
PZ(AA′/PA)

=
AW

AR
=

b

c
,

and similarly that PX : PZ = a : c. Now

6 XPY = 360◦ − 6 PXC − 6 PY C − 6 XCY = 180◦ − 6 XCY = 180◦ − 6 ACB ,
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so that [XPY ] = 1
2PX · PY sin 6 XPY = 1

2PX · PY sin 6 ACB. We find that

[XPY ] : [Y PZ] : [ZPX] =
1
2
PX · PY sin 6 ACB :

1
2
PY · PZ sin 6 ACB :

1
2
PZ · PX sin 6 ABC

=
1
2
ab sinC :

1
2
bc sinA :

1
2
ca sinB = [ABC] : [ABC] : [ABC] = 1 : 1 : 1 .

Hence [XPY ] = [Y PZ] = [ZPX] = 1
3 [XY Z], so that the altitudes of these triangle from P to the sides of

triangle XY Z are each one-third of the corresponding altitudes for triangle XY Z. Hence P must be the
centroid of triangle XY Z.

Comment. A. Zhang and Y. Zhao gave the same construction. Zhang first gave an argument that P ,
being the centroid of triangle XY Z is characterized by PX : PY : PZ = a : b : c. This is a result of the
characterization [XPY ] = [Y PZ] = [ZPX] and the law of sines, with the argument similar to Lipnowski’s.
Zhao used the fact that PX : PY : PZ = BC : CA : AB and that the vectors −−→PX, −−→PY , −→PZ were dilated
versions of −−→BC, −→CA, −−→AB after a 90◦ rotation, so that −−→PX +−−→PY +−→PZ = −→

O .

287. Let M and N be the respective midpoints of the sides BC and AC of the triangle ABC. Prove that
the centroid of the triangle ABC lies on the circumscribed circle of the triangle CMN if and only if

4 · |AM | · |BN | = 3 · |AC| · |BC| .

Solution 1.

4|AM ||BN | = 3|AC||BC| ⇐⇒ 12|AM ||GN | = 12|AN ||MC| ⇐⇒ |AM | : |MC| = |AN | : |GN |

⇐⇒ ∆AMC ∼ ∆ANG ⇐⇒ 6 AMC = 6 ANG

⇐⇒ GMGN is concyclic.

Solution 2. [A. Zhang] Since M and N are respective midpoints of BC and AC, [ABC] = 4[NMC], so
that

[ABMN ] =
3
4
[ABC] =

3
8
|AC||BC| sin 6 ACB .

However, [ABMN ] = 1
2 |AM ||BN | sin 6 NGM (why?). Hence

4|AM ||BN | sin 6 NGM = 3|AC||BC| sin 6 ACB .

Observe that G lies inside triangle ABC, and so lies within the circumcircle of this triangle. Hence 6 NGM =
6 AGB > 6 ACB. We deduce that

4|AM ||BN | = 3|AC||BC| ⇐⇒ sin 6 NGM = sin 6 ACB ⇐⇒ 6 NGM + 6 ACB = 180◦

⇐⇒ CMGN is concyclic.

288. Suppose that a1 < a2 < · · · < an. Prove that

a1a
4
2 + a2a

4
3 + · · ·+ ana4

1 ≥ a2a
4
1 + a3a

4
2 + · · ·+ a1a

4
n .

Solution. The result is trivial for n = 2. To deal with the n = 3 case, observe that, when x < y < z,

(xy4 + yz4 + zx4)− (yx4 + zy4 + xz4) = (1/2)(z − x)(y − x)(z − y)[(x + y)2 + (x + z)2 + (y + z)2] ≥ 0 .
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As an induction hypothesis, assume that the result holds for the index n ≥ 3. Then

(a1a
4
2 + a2a

4
3 + · · ·+ ana4

n+1 + an+1a
4
1)− (a2a

4
1 + a3a

4
2 + · · ·+ an+1a

4
n + a1a

4
n+1)

= (a1a
4
2 + a2a

4
3 + · · ·+ ana4

1)− (a2a
4
1 + a3a

4
2 + · · ·+ a1a

4
n)

+ (a1a
4
n + ana4

n+1 + an+1a
4
1)− (ana4

1 + an+1a
4
n + a1a

4
n+1) ≥ 0 ,

as desired.

289. Let n(r) be the number of points with integer coordinates on the circumference of a circle of radius
r > 1 in the cartesian plane. Prove that

n(r) < 6 3
√

πr2 .

Solution. Let A = πr2 be the area of the circle, so that the right side of the inequality is 6A1/3. We
observe that A > 3, π2 < (22/7)2 < 10 < (2.2)3.

6A1/3 − 2π2/3A1/3 = (6− 2π2/3)A1/3 > (6− 2× 101/3)A1/3

> (6− 4.4)× 31/3 > 1.6× 1.25 = 2 ,

so that there is an even integer k for which

6 = 2× 32/3 × 31/3 < 2π2/3A1/3 < k < 6A1/3 .

In particular, 8π2A < k3.

Let P1P2 · · ·Pk be a regular k−gon inscribed in the circle. Locate the vertices so that none have integer
coordinates. (How?) Identify Pk+1 = P1 and Pk+2 = P2, and let vi = −−−−→

PiPi+1 for 1 ≤ i ≤ k. Observe that
vi has length less than 2πr/k = (2/k)(πA)1/2. Then, for each i, the area of triangle PiPi+1Pi+2 is equal to

1
2
|vi × vi+1| =

1
2
|vi||vi+1| sin(2π/k) <

1
2
× 4

k2
× πA× 2π

k
=

1
2
× 8π2

k3
×A <

1
2

.

Suppose, if possible, that the arc joining Pi and Pi+2 (through Pi+1) contains points U , V , W , each with
integer coordinates. Then, if u, v, w are the corresponding vectors for these points, then |(v−u)× (w−u)|
must be a positive integer, and so the area of triangle UV W must be at least 1/2. But each of the sides of
triangle UV W has length less than the length of PiPi+2 and the shortest altitude of triangle UV W is less
than the altitude of triangle PiPi+1Pi+2 from Pi+1 to side PiPi+2. Thus,

1
2
≤ [UV W ] ≤ [PiPi+1Pi+2] <

1
2

,

a contradiction. Hence, each arc PiPi+2 has at most two points with integer coordinates. The whole
circumference of the circle is the union of k/2 nonoverlapping such arcs, so that there must be at most k
points with integer coordinates. The result follows.
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