Solutions

283. (a) Determine all quadruples (a, b, c, d) of positive integers for which the greatest common divisor of its elements is 1 ,

$$
\frac{a}{b}=\frac{c}{d}
$$

and $a+b+c=d$.
(b) Of those quadruples found in (a), which also satisfy

$$
\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=\frac{1}{a} ?
$$

(c) For quadruples (a, b, c, d) of positive integers, do the conditions $a+b+c=d$ and $(1 / b)+(1 / c)+(1 / d)=$ $(1 / a)$ together imply that $a / b=c / d$?

Solution 1. (a) Suppose that the conditions on a, b, c, d are satisfied. Note that b and c have symmetric roles. Since $a d=b c$, if b and c were both even, then either a or d would be even, whence both would be even (since $a+b+c=d$), contradicting the fact that the greatest common divisor of a, b, c, d is equal to 1 . Hence, at most one of b and c is even.

Suppose, if possible, b and c were both odd. Then a and d would be odd as well. If $b \equiv c(\bmod 4)$, then $b c \equiv 1$ and $b+c \equiv 2(\bmod 4)$, whence $a d \equiv a(a+2) \equiv 3 \not \equiv b c(\bmod 4)$. If $b \equiv c+2(\bmod 4)$, it can similarly be shown that $a d \not \equiv b c(\bmod 4)$, In either case, we get an untenable conclusion. Hence, exactly one of b and c is even and the other is odd.

Without loss of generality, we may suppose that a and b have opposite parity. Let g be the greatest common divisor of a and b, so that $a=g u$ and $b=g v$ for some coprime pair (u, v) of positive integers with opposite parity. Since $d>c$, it follows that $b>a$ and $v>u$. Let $w=v-u$.

Since

$$
\frac{b}{a}=\frac{a+b+c}{c}=\frac{a+b}{c}+1
$$

it follows that

$$
\frac{b-a}{a(b+a)}=\frac{1}{c}
$$

whence

$$
c=\frac{g u(u+v)}{w} \quad \text { and } \quad d=\frac{g v(u+v)}{w} .
$$

Since the greatest common divisor of u and v is $1, w$ has no positive divisor in common with either u or v, save 1. Any common divisor of w and $u+v$ must divide $2 u=(u+v)-(v-u)$ and $2 v=(u+v)+(v-u)$; such a common divisor equals 1 . Since u and v have opposite parity and so w is odd, w must divide g. Since the greatest common divisor of a, b, c, d is equal to 1 , we must have that $g=w$. Hence

$$
(a, b, c, d)=(u(v-u), v(v-u), u(v+u), v(v+u))
$$

where u and v are coprime with opposite parity. Interchanging, the roles of b and c leads also to

$$
(a, b, c, d)=(u(v-u), u(v+u), v(v-u), v(v+u))
$$

with u, v coprime of opposite parity. On the other hand, any quadruples of this type satisfy the condition.
(b)

$$
\begin{aligned}
\frac{1}{b}+\frac{1}{c}+\frac{1}{d} & =\frac{1}{v(v-u)}+\frac{1}{u(v+u)}+\frac{1}{v(v+u)} \\
& =\frac{1}{v(v-u)}+\frac{1}{u v}=\frac{u+(v-u)}{u v(v-u)}=\frac{1}{v-u}=\frac{1}{a}
\end{aligned}
$$

(c) Note that the conditions imply that $d-a$ and $b+c$ are nonzero. The conditions yield that $d-a=b+c$ and $(1 / a)-(1 / d)=(1 / b)+(1 / c)$. The second of these can be rewritten

$$
\frac{a d}{d-a}=\frac{b c}{b+c}
$$

so that $a d=b c$. Thus, all quadruples imply the required condition.
Solution 2. (a) [M. Lipnowski] Let $a / b=c / d=r / s$ where the greatest common divisor of r and s is equal to 1 . Then $a=h r, b=h s, c=k r, d=k s$. Since the greatest common divisor of a, b, c, d equals 1 , the greatest common divisor of h and k is 1 . From $a+b+c=d$, we have that $(h+k) r=(k-h) s$. Observe that $\operatorname{gcd}(h+k, k-h)=1$ when h and k have opposite parity and $\operatorname{gcd}(h+k, k-h)=2$ when h and k are both odd. (Why?)

Thus, when h and k have oppposite parity, $r=k-h, s=k+h$ and

$$
(a, b, c, d)=(h(k-h), h(k+h), k(k-h), k(k+h))
$$

and, when h and k are both odd, then $r=\frac{1}{2}(k-h), s=\frac{1}{2}(k+h)$ and

$$
(a, b, c, d)=((1 / 2) h(k-h),(1 / 2) h(k+h),(1 / 2) k(k-h),(1 / 2) k(k+h))
$$

It can be checked that these always work. (Collate these with the result given in Solution 1.)
(b) Since $a / b=c /(a+b+c), c=a(a+b) /(b-a)$ and $d=(a+b)+[a(a+b) /(b-a)]=b(a+b) /(b-a)$. Hence

$$
\begin{aligned}
\frac{1}{b}+\frac{1}{c}+\frac{1}{d} & =\frac{1}{b}+\frac{b-a}{a+b}\left(\frac{1}{a}+\frac{1}{b}\right) \\
& =\frac{1}{b}+\frac{b-a}{a b}=\frac{1}{a}
\end{aligned}
$$

(c) [M. Lipnowski]

$$
\frac{1}{b}+\frac{1}{c}+\frac{1}{a+b+c}=\frac{1}{a}
$$

is equivalent to

$$
\begin{aligned}
0 & =b c(a+b+c)-a(b+c)(a+b+c)-a b c \\
& =(b+c)\left(b c-a^{2}-a b-a c\right)
\end{aligned}
$$

which in turn is equivalent to

$$
0=b c-a^{2}-a b-a c \Longleftrightarrow b c=a(a+b+c)=a d .
$$

284. Suppose that $A B C D E F$ is a convex hexagon for which $\angle A+\angle C+\angle E=360^{\circ}$ and

$$
\frac{A B}{B C} \cdot \frac{C D}{D E} \cdot \frac{E F}{F A}=1
$$

Prove that

$$
\frac{A B}{B F} \cdot \frac{F D}{D E} \cdot \frac{E C}{C A}=1
$$

Solution 1. [A. Zhang] Since the hexagon is convex, all its angles are less than 180°. A dilation of factor $|C D| /|D E|$ followed by a rotation, both with centre D, takes E to C and F to a point G so that $\triangle D C G \sim \triangle D E F, \angle D E F=\angle D C G$ and $D E: E F: F D=D C: C G: G D$. Since $D E: D C=F D: G D$ and $\angle E D C=\angle F D G, \triangle E D C \sim \triangle F D C$ and $D E: D C: C E=F D: D G: G F$. Now

$$
\angle D C G+\angle B C D=\angle D E F+\angle B C D=360^{\circ}-\angle F A B>180^{\circ}
$$

so that C lies within the triangle $B D G$ and $\angle B C G=360^{\circ}-(\angle D C G+\angle B C D)=\angle F A B$.
Also,

$$
\frac{C G}{C D}=\frac{E F}{D E}=\frac{A F}{A B} \cdot \frac{B C}{C D}
$$

so that $C G: B C=A F: A B$, with the result that $\triangle B C G \sim \triangle B A F, A B: B F: F A=C B: B G: G C$ and $\angle F B G=\angle A B C$. From the equality of these angles and $A B: C B=B F: B G$, we have that $\triangle A B C \sim \triangle F B G$ and $A B: B C: C A=F B: B G: G F$. Hence

$$
\frac{A B}{B F} \cdot \frac{F D}{D E} \cdot \frac{E C}{C A}=\frac{C A}{G F} \cdot \frac{G F}{C E} \cdot \frac{C E}{C A}=1
$$

as desired.
Solution 2. [T. Yin] Lemma. Let $A B C D$ be a convex quadrilateral with a, b, c, d, p, q the respective lengths of $A B, B C, C D, D A, A C$ and $B D$. Then

$$
p^{2} q^{2}=(a c+b d)^{2}-4 a b c d \cos ^{2} \theta
$$

where $2 \theta=\angle A+\angle C$.
Proof of Lemma. Locate E within the quadrilateral so that $\angle E D C=\angle A D B$ and $\angle E C D=\angle A B D$. Then $\triangle A B D \sim \triangle E C D$ whence $a c=q x$ where x is the length of $E C$. Now $\angle A D E=\angle B D C$ and $A D$: $D E=B D: C D$ whence $\triangle A D E \sim \triangle B D C$ and $b d=q y$ with y the length of $A E$.

Hence $a b c d=q^{2} x y$ and $a c+b d=q(x+y)$. Therefore,

$$
a^{2} c^{2}+b^{2} d^{2}+2 a b c d=q^{2}\left(x^{2}+2 x y+y^{2}\right)=q^{2}\left(x^{2}+y^{2}\right)+2 a b c d
$$

which reduces to $a^{2} c^{2}+b^{2} d^{2}=q^{2}\left(x^{2}+y^{2}\right)$.
Since $\angle D E C=\angle B A D$ and $\angle A E D=\angle B C D$,

$$
\angle A E C=\angle A E D+\angle D E C=\angle C+\angle A=2 \theta
$$

By the law of cosines,

$$
\begin{gathered}
p^{2}=x^{2}+y^{2}-2 x y \cos 2 \theta=x^{2}+y^{2}-2 x y\left(2 \cos ^{2} \theta-1\right) \Longrightarrow \\
a^{2} c^{2}+b^{2} d^{2}=p^{2} q^{2}+4 q^{2} x y \cos ^{2} \theta-2 q^{2} x y \\
=p^{2} q^{2}+4 a b c d \cos ^{2} \theta-2 a b c d
\end{gathered}
$$

so that the desired result follows.
Note that, when $\angle A+\angle C=180^{\circ}$, then we get Ptolemy's Theorem. Consider the hexagon of the problem with $|A B|=a,|B C|=b,|C D|=c,|D E|=d,|E F|=e,|F A|=f,|B F|=g,|C A|=h,|C F|=m$, $|D F|=u$ and $|C E|=v$. We are given that ace $=b d f$ and need to prove that $a u v=d g h$.

From the lemma applied to $A B D F$, we obtain that

$$
g^{2} h^{2}=a^{2} m^{2}+2 a b f m+b^{2} f^{2}-4 a b f m \cos ^{2} \alpha
$$

where $2 \alpha=\angle B A C+\angle B C F$. Applying the lemma to $C D E F$ yields that

$$
u^{2} v^{2}=d^{2} m^{2}+2 c d e m+c^{2} e^{2}-4 c d e m \cos ^{2} \beta
$$

where $2 \beta=\angle F C D+\angle D E F$. Since $\angle A+\angle C+\angle E=360^{\circ}, \alpha+\beta=180^{\circ}$ and $\cos ^{2} \alpha=\cos ^{2} \beta$. Finally,

$$
\begin{aligned}
d^{2} g^{2} h^{2}-a^{2} u^{2} v^{2}= & \left(a^{2} d^{2} m^{2}+2 a b d^{2} f m+b^{2} d^{2} f^{2}-4 a b d^{2} f m \cos ^{2} \alpha\right) \\
& \quad-\left(a^{2} d^{2} m^{2}+2 a^{2} c d e m+a^{2} c^{2} e^{2}-4 a^{2} c d e m \cos ^{2} \beta\right) \\
= & 2 a d m(b d f-a c e)+\left(b^{2} d^{2} f^{2}-a^{2} c^{2} e^{2}\right)-4 a d m(b d f-a c e) \cos ^{2} \alpha=0
\end{aligned}
$$

whence $a u v=d g h$ as required.
Solution 3. [Y. Zhao] The proof uses inversion in a circle and directed angles. Recall that, if O is the centre of a circle of radius r, then inversion is that involution $X \leftrightarrow X^{\prime}$ for which X^{\prime} is on the ray from O through X and $O X \cdot O X^{\prime}=r^{2}$. It is not too hard to check using similar triangles that $\angle O P Q=\angle O Q^{\prime} P^{\prime}$ and using the law of cosines that $P^{\prime} Q^{\prime}=P Q \cdot\left(r^{2} /(O P \cdot O Q)\right)$. For this problem, we make F the centre of the inversion. Then

$$
\begin{aligned}
360^{\circ} & =\angle F A B+\angle B C D+\angle D E F=\angle F A B+\angle B C F+\angle F C D+\angle D E F \\
& =\angle A^{\prime} B^{\prime} F+\angle F B^{\prime} C^{\prime}+\angle C^{\prime} D^{\prime} F+\angle F D^{\prime} E^{\prime}=\angle A^{\prime} B^{\prime} C^{\prime}+\angle C^{\prime} D^{\prime} E^{\prime}
\end{aligned}
$$

whence $\angle C^{\prime} B^{\prime} A^{\prime}=\angle C^{\prime} D^{\prime} E^{\prime}$.
In the following, we suppress the factor r^{2}. We obtain that

$$
\begin{aligned}
\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}} \cdot \frac{C^{\prime} D^{\prime}}{D^{\prime} E^{\prime}} & =\left(\frac{A B}{F A \cdot F B} \cdot \frac{F B \cdot F C}{B C}\right) \cdot\left(\frac{C D}{F C \cdot F D} \cdot \frac{F D \cdot F E}{D E}\right) \\
& =\frac{A B}{F A} \cdot \frac{C D}{B C} \cdot \frac{E F}{D E}=1
\end{aligned}
$$

so that $A^{\prime} B^{\prime}: B^{\prime} C^{\prime}=D^{\prime} E^{\prime}: C^{\prime} D^{\prime}$. This, along with $\angle C^{\prime} B^{\prime} A^{\prime}=\angle C^{\prime} D^{\prime} E^{\prime}$ implies that $\Delta C^{\prime} B^{\prime} A^{\prime} \sim$ $\Delta C^{\prime} D^{\prime} E^{\prime}$, so that $A^{\prime} B^{\prime}: A^{\prime} C^{\prime}=D^{\prime} E^{\prime}: E^{\prime} C^{\prime}$ or $A^{\prime} B^{\prime} \cdot E^{\prime} C^{\prime}=A^{\prime} C^{\prime} \cdot E^{\prime} D^{\prime}$.

Therefore

$$
\begin{aligned}
\frac{A B}{B F} \cdot \frac{F D}{D E} \cdot \frac{E C}{C A} & =\left(\frac{A^{\prime} B^{\prime}}{F A^{\prime} \cdot F B^{\prime}} \cdot B^{\prime} F\right) \cdot\left(\frac{1}{F^{\prime} D^{\prime}} \cdot \frac{F D^{\prime} \cdot F E^{\prime}}{D^{\prime} E^{\prime}}\right) \cdot\left(\frac{E^{\prime} C^{\prime}}{F E^{\prime} \cdot F C^{\prime}} \cdot \frac{F C^{\prime} \cdot F A^{\prime}}{C^{\prime} A^{\prime}}\right) \\
& =\frac{A^{\prime} B^{\prime}}{A^{\prime} C^{\prime}} \cdot \frac{E^{\prime} C^{\prime}}{E^{\prime} D^{\prime}}=1
\end{aligned}
$$

as desired.
Solution 4. [M. Abdeh-Kolahchi] Let A, B, C, D, E, F be points in the complex plane with

$$
\begin{aligned}
& B-A=a=|a|(\cos \alpha+i \sin \alpha) \\
& C-B=b=|b|(\cos \beta+i \sin \beta) \\
& D-C=c=|c|(\cos \gamma+i \sin \gamma) \\
& E-D=d=|d|(\cos \delta+i \sin \delta) \\
& F-E=e=|e|(\cos \epsilon+i \sin \epsilon) \\
& A-F=f=|f|(\cos \phi+i \sin \phi)
\end{aligned}
$$

Modulo 360°, we have that

$$
\begin{aligned}
& \angle A=\angle F A B \equiv 180^{\circ}-(\phi-\alpha) \\
& \angle C=\angle B C D \equiv 180^{\circ}-(\delta-\beta) \\
& \angle E=\angle D E F \equiv 180^{\circ}-(\epsilon-\gamma)
\end{aligned}
$$

Also $a+b+c+d+e+f=0$ and

$$
\begin{aligned}
\frac{a c e}{b d f} & =\frac{|a||c||e|(\cos \alpha+i \sin \alpha)(\cos \gamma+i \sin \gamma)(\cos \epsilon+i \sin \epsilon)}{|b||d||f|(\cos \beta+i \sin \beta)(\cos \delta+i \sin \delta)(\cos \phi+i \sin \phi)} \\
& =1(\cos (\alpha-\phi+\delta-\beta+\epsilon-\gamma)) \\
& =\cos \left(\angle A-180^{\circ}+\angle C-180^{\circ}+\angle E-180^{\circ}\right)=\cos \left(-180^{\circ}\right)=-1
\end{aligned}
$$

whence $a c e+b d f=0$. Therefore,

$$
0=a d(a+b+c+d+e+f)+(a c e+b d f)=a(d+e)(c+d)+d(a+f)(a+b),
$$

whence

$$
\begin{aligned}
\frac{a(d+e)(c+d)}{d(a+f)(a+b)} & =-1 \Longrightarrow \frac{|a|}{|a+f|} \cdot \frac{|d+e|}{|d|} \cdot \frac{|c+d|}{|a+b|}=1 \\
& \Longrightarrow \frac{A B}{B F} \cdot \frac{F D}{D E} \cdot \frac{E C}{C A}=1
\end{aligned}
$$

285. (a) Solve the following system of equations:

$$
\begin{gathered}
\left(1+4^{2 x-y}\right)\left(5^{1-2 x+y}\right)=1+2^{2 x-y+1} \\
y^{2}+4 x=\log _{2}\left(y^{2}+2 x+1\right)
\end{gathered}
$$

(b) Solve for real values of x :

$$
3^{x} \cdot 8^{x /(x+2)}=6
$$

Express your answers in a simple form.
Solution. Let $u=2 x-y$. Then

$$
\left(1+4^{u}\right)\left(5^{1-u}\right)=1+2^{u+1}
$$

so that

$$
5^{u-1}=\frac{1+2^{2 u}}{1+2^{u+1}}=2^{u-1}+\frac{1-2^{u-1}}{1+2^{u+1}}
$$

Thus,

$$
5^{u-1}-2^{u-1}=\frac{1-2^{u-1}}{1+2^{u+1}}
$$

When $u>1$, the left side of this equation is positive while the right is negative; when $u<1$, the reverse is true. Hence, the only possible solution is $u=1$, which checks out.

Substituting for x leads to

$$
y^{2}+2 y+2=\log _{2}\left(y^{2}+y+2\right) .
$$

Since $y^{2}+y+2=\left(y+\frac{1}{2}\right)^{2}+\frac{7}{4}>0$, the right side is defined and is in fact positive. Let

$$
\phi(y)=y^{2}+2 y+2-\log _{2}\left(y^{2}+y+2\right) .
$$

Then

$$
\begin{gathered}
\phi^{\prime}(y)=\frac{2 y(y+1)^{2}+4(y+1)-\left(\log _{2} e\right)(2 y+1)}{y^{2}+y+2} . \\
\phi^{\prime}(y)=0 \Longleftrightarrow(y+1)^{2}=-\left(\left(2-\log _{2} e\right)+\frac{4-\log _{2} e}{2 y}\right) .
\end{gathered}
$$

From the graphs of the two sides of the equation, we see that the left side and the right side have opposite signs when $y>0$ and become equal for exactly one value of y. It follows that $\phi^{\prime}(y)$ changes sign exactly once so that $\phi(y)$ decreases and then increases. Thus, $\phi(y)$ vanishes at most twice. Indeed, $\phi(-2)=\phi(-1)=0$, and so $(x, y)=(0,-1),\left(-\frac{1}{2},-2\right)$ are the only solutions of the equation.
(b) The equation can be rewritten

$$
1=3^{1-x} 2^{2(1-x) /(x+2)}
$$

whence

$$
0=(1-x)(\log 3+(2 /(x+2)) \log 2) .
$$

Thus, either $x=1$ or $0=\log _{2} 3+2 /(x+2)$. The latter leads to

$$
x=-2\left(1+\log _{3} 2\right)=-2\left(\log _{3} 6\right)=-\log _{3} 36
$$

286. Construct inside a triangle $A B C$ a point P such that, if X, Y, Z are the respective feet of the perpendiculars from P to $B C, C A, A B$, then P is the centroid (intersection of the medians) of triangle $X Y Z$.

Solution 1. Let $A U, B V, C W$ be the medians of triangle $A B C$ and let $A L, B M, C N$ be their respective images in the bisectors of angles A, B, C. Since $A U, B V, C W$ intersect in a common point (the centroid of $\triangle A B C)$. $A L, B M, C N$ must intersect in a common point P. This follows from the sine version of Ceva's theorem and its converse. Let X, Y, Z be the respective feet of the perpendiculars from P to sides $B C$, $A C, A B$.

Let I, J, K be the respective feet of the perpendiculars from the centroid G to the sides $B C, A C$ and $A B$. The quadrilateral $P Y A Z$ is the image of the quadrilateral $G J A K$ under a reflection in the angle bisector of A followed by a dilation with centre A and factor $A P / A G$. Hence $P Y: P Z=G K: G I$. Since triangles $A G B$ and $A G C$ have the same area,

$$
A B \cdot G K=A C \cdot G J \Longrightarrow P Y: P Z=A C: A B=b: c
$$

Applying a similar argument involving $P X$, we find that

$$
P X: P Y: P Z=a: b: c
$$

Let $P X=a e, P Y=b e, P Z=c e$. Then, since $\angle X P Y+\angle A C B=180^{\circ}$,

$$
[P X Y]=\frac{1}{2} a b e^{2} \sin \angle X P Y=e^{2}\left(\frac{1}{2} a b \sin C\right)=e^{2}[A B C]
$$

Similarly, $[P Y Z]=[P Z X]=e^{2}[A B C]=[P X Y]$, whence P must be the centroid of triangle $X Y Z$.
Solution 2. [M. Lipnowski] Erect squares $A R S B, B T U C, C V W A$ externally on the edges of the triangle. Suppose that $R S$ and $V W$ intersect at $A^{\prime}, R S$ and $T U$ at B^{\prime} and $T U$ and $U W$ at C^{\prime}.

We establish that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrent. They are cevians in the triangle $A^{\prime} B^{\prime} C^{\prime}$. We have that

$$
\begin{aligned}
\frac{\sin \angle R A^{\prime} A}{\sin \angle W A^{\prime} A} & \cdot \frac{\sin \angle V C^{\prime} C}{\sin \angle U C^{\prime} C} \cdot \frac{\sin \angle T B^{\prime} B}{\sin \angle S B^{\prime} B} \\
& =\frac{\left(A R / A A^{\prime}\right)}{\left(A W / A A^{\prime}\right)} \cdot \frac{\left(V C / C C^{\prime}\right)}{\left(U C / C C^{\prime}\right)} \cdot \frac{\left(T B / B B^{\prime}\right)}{\left(B S / B B^{\prime}\right)} \\
& =\frac{A R}{A W} \cdot \frac{V C}{U C} \cdot \frac{T B}{B C}=\frac{c}{b} \cdot \frac{b}{a} \cdot \frac{a}{c}=1
\end{aligned}
$$

Hence $A A^{\prime}, B B^{\prime}, C C^{\prime}$ intersect in a point P by the converse to Ceva's Theorem. P is the desired point.
To prove that this works, we first show that $P X: P Y: P Z=a: b: c$, and then that $[X P Y]=[Y P Z]=$ $[Z P X]$. Observe that, since $\triangle P Z A \sim \Delta A R A^{\prime}$ and $\triangle P Y A \sim \Delta A W A^{\prime}$,

$$
\frac{P Y}{P Z}=\frac{P Y\left(A A^{\prime} / P A\right)}{P Z\left(A A^{\prime} / P A\right)}=\frac{A W}{A R}=\frac{b}{c}
$$

and similarly that $P X: P Z=a: c$. Now

$$
\angle X P Y=360^{\circ}-\angle P X C-\angle P Y C-\angle X C Y=180^{\circ}-\angle X C Y=180^{\circ}-\angle A C B
$$

so that $[X P Y]=\frac{1}{2} P X \cdot P Y \sin \angle X P Y=\frac{1}{2} P X \cdot P Y \sin \angle A C B$. We find that

$$
\begin{aligned}
{[X P Y]: } & {[Y P Z]:[Z P X]=\frac{1}{2} P X \cdot P Y \sin \angle A C B: \frac{1}{2} P Y \cdot P Z \sin \angle A C B: \frac{1}{2} P Z \cdot P X \sin \angle A B C } \\
& =\frac{1}{2} a b \sin C: \frac{1}{2} b c \sin A: \frac{1}{2} c a \sin B=[A B C]:[A B C]:[A B C]=1: 1: 1 .
\end{aligned}
$$

Hence $[X P Y]=[Y P Z]=[Z P X]=\frac{1}{3}[X Y Z]$, so that the altitudes of these triangle from P to the sides of triangle $X Y Z$ are each one-third of the corresponding altitudes for triangle $X Y Z$. Hence P must be the centroid of triangle $X Y Z$.

Comment. A. Zhang and Y. Zhao gave the same construction. Zhang first gave an argument that P, being the centroid of triangle $X Y Z$ is characterized by $P X: P Y: P Z=a: b: c$. This is a result of the characterization $[X P Y]=[Y P Z]=[Z P X]$ and the law of sines, with the argument similar to Lipnowski's. Zhao used the fact that $P X: P Y: P Z=B C: C A: A B$ and that the vectors $\overrightarrow{P X}, \overrightarrow{P Y}, \overrightarrow{P Z}$ were dilated versions of $\overrightarrow{B C}, \overrightarrow{C A}, \overrightarrow{A B}$ after a 90° rotation, so that $\overrightarrow{P X}+\overrightarrow{P Y}+\overrightarrow{P Z}=\vec{O}$.
287. Let M and N be the respective midpoints of the sides $B C$ and $A C$ of the triangle $A B C$. Prove that the centroid of the triangle $A B C$ lies on the circumscribed circle of the triangle $C M N$ if and only if

$$
4 \cdot|A M| \cdot|B N|=3 \cdot|A C| \cdot|B C| .
$$

Solution 1.

$$
\begin{aligned}
4|A M||B N|=3|A C||B C| & \Longleftrightarrow 12|A M||G N|=12|A N||M C| \\
& \Longleftrightarrow|A M|:|M C|=|A N|:|G N| \\
& \Longleftrightarrow A M C \sim \triangle A N G \Longleftrightarrow \angle A M C=\angle A N G
\end{aligned}
$$

$\Longleftrightarrow G M G N$ is concyclic.
Solution 2. [A. Zhang] Since M and N are respective midpoints of $B C$ and $A C,[A B C]=4[N M C]$, so that

$$
[A B M N]=\frac{3}{4}[A B C]=\frac{3}{8}|A C||B C| \sin \angle A C B .
$$

However, $[A B M N]=\frac{1}{2}|A M||B N| \sin \angle N G M$ (why?). Hence

$$
4|A M||B N| \sin \angle N G M=3|A C||B C| \sin \angle A C B .
$$

Observe that G lies inside triangle $A B C$, and so lies within the circumcircle of this triangle. Hence $\angle N G M=$ $\angle A G B>\angle A C B$. We deduce that

$$
4|A M||B N|=3|A C||B C| \Longleftrightarrow \sin \angle N G M=\sin \angle A C B \Longleftrightarrow \angle N G M+\angle A C B=180^{\circ}
$$

$\Longleftrightarrow C M G N$ is concyclic.
288. Suppose that $a_{1}<a_{2}<\cdots<a_{n}$. Prove that

$$
a_{1} a_{2}^{4}+a_{2} a_{3}^{4}+\cdots+a_{n} a_{1}^{4} \geq a_{2} a_{1}^{4}+a_{3} a_{2}^{4}+\cdots+a_{1} a_{n}^{4}
$$

Solution. The result is trivial for $n=2$. To deal with the $n=3$ case, observe that, when $x<y<z$,

$$
\left(x y^{4}+y z^{4}+z x^{4}\right)-\left(y x^{4}+z y^{4}+x z^{4}\right)=(1 / 2)(z-x)(y-x)(z-y)\left[(x+y)^{2}+(x+z)^{2}+(y+z)^{2}\right] \geq 0 .
$$

As an induction hypothesis, assume that the result holds for the index $n \geq 3$. Then

$$
\begin{aligned}
\left(a_{1} a_{2}^{4}+a_{2} a_{3}^{4}+\cdots+a_{n} a_{n+1}^{4}+a_{n+1} a_{1}^{4}\right) & -\left(a_{2} a_{1}^{4}+a_{3} a_{2}^{4}+\cdots+a_{n+1} a_{n}^{4}+a_{1} a_{n+1}^{4}\right) \\
& =\left(a_{1} a_{2}^{4}+a_{2} a_{3}^{4}+\cdots+a_{n} a_{1}^{4}\right)-\left(a_{2} a_{1}^{4}+a_{3} a_{2}^{4}+\cdots+a_{1} a_{n}^{4}\right) \\
& +\left(a_{1} a_{n}^{4}+a_{n} a_{n+1}^{4}+a_{n+1} a_{1}^{4}\right)-\left(a_{n} a_{1}^{4}+a_{n+1} a_{n}^{4}+a_{1} a_{n+1}^{4}\right) \geq 0,
\end{aligned}
$$

as desired.
289. Let $n(r)$ be the number of points with integer coordinates on the circumference of a circle of radius $r>1$ in the cartesian plane. Prove that

$$
n(r)<6 \sqrt[3]{\pi r^{2}}
$$

Solution. Let $A=\pi r^{2}$ be the area of the circle, so that the right side of the inequality is $6 A^{1 / 3}$. We observe that $A>3, \pi^{2}<(22 / 7)^{2}<10<(2.2)^{3}$.

$$
\begin{aligned}
6 A^{1 / 3}-2 \pi^{2 / 3} A^{1 / 3} & =\left(6-2 \pi^{2 / 3}\right) A^{1 / 3}>\left(6-2 \times 10^{1 / 3}\right) A^{1 / 3} \\
& >(6-4.4) \times 3^{1 / 3}>1.6 \times 1.25=2
\end{aligned}
$$

so that there is an even integer k for which

$$
6=2 \times 3^{2 / 3} \times 3^{1 / 3}<2 \pi^{2 / 3} A^{1 / 3}<k<6 A^{1 / 3}
$$

In particular, $8 \pi^{2} A<k^{3}$.
Let $P_{1} P_{2} \cdots P_{k}$ be a regular k-gon inscribed in the circle. Locate the vertices so that none have integer coordinates. (How?) Identify $P_{k+1}=P_{1}$ and $P_{k+2}=P_{2}$, and let $\mathbf{v}_{\mathbf{i}}=\overrightarrow{P_{i} P_{i+1}}$ for $1 \leq i \leq k$. Observe that $\mathbf{v}_{\mathbf{i}}$ has length less than $2 \pi r / k=(2 / k)(\pi A)^{1 / 2}$. Then, for each i, the area of triangle $P_{i} P_{i+1} P_{i+2}$ is equal to

$$
\frac{1}{2}\left|\mathbf{v}_{\mathbf{i}} \times \mathbf{v}_{\mathbf{i}+\mathbf{1}}\right|=\frac{1}{2}\left|\mathbf{v}_{\mathbf{i}}\right|\left|\mathbf{v}_{\mathbf{i}+\mathbf{1}}\right| \sin (2 \pi / k)<\frac{1}{2} \times \frac{4}{k^{2}} \times \pi A \times \frac{2 \pi}{k}=\frac{1}{2} \times \frac{8 \pi^{2}}{k^{3}} \times A<\frac{1}{2} .
$$

Suppose, if possible, that the arc joining P_{i} and $P_{i+2}\left(\right.$ through P_{i+1}) contains points U, V, W, each with integer coordinates. Then, if $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are the corresponding vectors for these points, then $|(\mathbf{v}-\mathbf{u}) \times(\mathbf{w}-\mathbf{u})|$ must be a positive integer, and so the area of triangle $U V W$ must be at least $1 / 2$. But each of the sides of triangle $U V W$ has length less than the length of $P_{i} P_{i+2}$ and the shortest altitude of triangle $U V W$ is less than the altitude of triangle $P_{i} P_{i+1} P_{i+2}$ from P_{i+1} to side $P_{i} P_{i+2}$. Thus,

$$
\frac{1}{2} \leq[U V W] \leq\left[P_{i} P_{i+1} P_{i+2}\right]<\frac{1}{2}
$$

a contradiction. Hence, each arc $P_{i} P_{i+2}$ has at most two points with integer coordinates. The whole circumference of the circle is the union of $k / 2$ nonoverlapping such arcs, so that there must be at most k points with integer coordinates. The result follows.

