
Solutions.

304. Prove that, for any complex numbers z and w,

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣ ≤ 2|z + w| .

Solution 1.

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣
=

∣∣∣∣z + w +
|z|w
|w|

+
|w|z
|z|

∣∣∣∣
≤ |z + w|+ 1

|z||w|
|z̄zw + w̄zw|

= |z + w|+ |zw|
|z||w|

|z̄ + w̄| = 2|z + w| .

Solution 2. Let z = aeiα and w = beiβ , with a and b real and positive. Then the left side is equal to

|(a + b)(eiα + eiβ)| = |aeiα + aeiβ + beiα + beiβ |
≤ |aeiα + beiβ |+ |aeiβ + beiα| .

Observe that
|z + w|2 = |(aeiα + beiβ)(ae−iα + be−iβ)|

= a2 + b2 + ab[ei(α−β) + ei(β−α)]

= |(aeiβ + beiα)(ae−iβ + be−iα)|

from which we find that the left side does not exceed

|aeiα + beiβ |+ |aeiβ + beiα| = 2|aeiα + beiβ | = 2|z + w| .

Solution 3. Let z = aeiα and w = beiβ , where a and b are positive reals. Then the inequality is equivalent
to ∣∣∣∣12(eiα + eiβ)

∣∣∣∣ ≤ |λeiα + (1− λ)eiβ |

where λ = a/(a + b). But this simply says that the midpoint of the segment joining eiα and eiβ on the unit
circle in the Argand diagram is at least as close to the origin as another point on the segment.

Solution 4. [G. Goldstein] Observe that, for each µ ∈ C,∣∣∣∣ µz

|µz|
+

µw

|µw|

∣∣∣∣ =
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣ ,

|µ|[|z|+ |w|] = |µz + µw| ,

and
|µ||z + w| = |µz + µw| .

So the inequality is equivalent to

(|t|+ 1)
∣∣∣∣ t

|t|
+ 1

∣∣∣∣ ≤ 2|t + 1|
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for t ∈ C. (Take µ = 1/w and t = z/w.)

Let t = r(cos θ + i sin θ). Then the inequality becomes

(r + 1)
√

(cos θ + 1)2 + sin2 θ ≤ 2
√

(r cos θ + 1)2 + r2 sin2 θ = 2
√

r2 + 2r cos θ + 1 .

Now,
4(r2 + 2r cos θ + 1)− (r + 1)2(2 + 2 cos θ)

= 2r2(1− cos θ) + 4r(cos θ − 1) + 2(1− cos θ)

= 2(r − 1)2(1− cos θ) ≥ 0 ,

from which the inequality follows.

Solution 5. [R. Mong] Consider complex numbers as vectors in the plane. q = (|z|/|w|)w is a vector of
magnitude z in the direction w and p = (|w|/|z|)z is a vector of magnitude w in the direction z. A reflection
about the angle bisector of vectors z and w interchanges p and w, q and z. Hence |p+q| = |w+z|. Therefore

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣
= |z + q + p + w| ≤ |z + w|+ |p + q|
= 2|z + w| .

305. Suppose that u and v are positive integer divisors of the positive integer n and that uv < n. Is it
necessarily so that the greatest common divisor of n/u and n/v exceeds 1?

Solution 1. Let n = ur = vs. Then uv < n ⇒ v < r, u < s, so that n2 = uvrs ⇒ rs > n. Let the greatest
common divisor of r and s be g and the least common multiple of r and s be m. Then m ≤ n < rs = gm,
so that g > 1.

Solution 2. Let g = gcd (u, v), u = gs and v = gt. Then gst ≤ g2st < n so that st < n/g. Now s and
t are a coprime pair of integers, each of which divides n/g. Therefore, n/g = dst for some d > 1. Therefore
n/u = n/(gs) = dt and n/v = n/(gt) = ds, so that n/u and n/v are divisible by d, and so their greatest
common divisor exceeds 1.

Solution 3. uv < n =⇒ nuv < n2 =⇒ n < (n/u)(n/v). Suppose, if possible, that n/u and n/v have
greatest common divisor 1. Then the least common multiple of n/u and n/v must equal (n/u)(n/v). But n
is a common multiple of n/u and n/v, so that (n/u)(n/v) ≤ n, a contradiction. Hence the greatest common
divisor of n/u and n/v exceeds 1.

Solution 4. Let P be the set of prime divisors of n, and for each p ∈ P . Let α(p) be the largest integer k
for which pk divides n. Since u and v are divisors of n, the only prime divisors of either u or v must belong
to P . Suppose that β(p) is the largest value of the integer k for which pk divides uv.

If β(p) ≥ α(p) for each p ∈ P , then n would divide uv, contradicting uv < n. (Note that β(p) > α(p)
may occur for some p.) Hence there is a prime q ∈ P for which β(q) < α(q). Then qα(q) is not a divisor
of either u or v, so that q divides both n/u and n/v. Thus, the greatest common divisor of n/u and n/v
exceeds 1.

Solution 5. [D. Shirokoff] If n/u and n/v be coprime, then there are integers x and y for which
(n/u)x + (n/v) = 1, whence n(xv + yu) = uv. Since n and uv are positive, then so is the integer xv + yu.
But uv < n =⇒ 0 < xv + yu < 1, an impossibility. Hence the greatest common divisor of n/u and n/v
exceeds 1.

306. The circumferences of three circles of radius r meet in a common point O. They meet also, pairwise, in
the points P , Q and R. Determine the maximum and minimum values of the circumradius of triangle
PQR.
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Answer. The circumradius always has the value r.

Solution 1. [M. Lipnowski] 6 QPO = 6 QRO, since OQ is a common chord of two congruent circles, and
so subtends equal angles at the respective circumferences. (Why are angle QPO and QRO not supplemen-
tary?) Similarly, 6 OPR = 6 OQR. Let P ′ be the reflected image of P in the line QR so that triangle P ′QR
and PQR are congruent. Then

6 QP ′R + 6 QOR = 6 QPR + 6 QOR = 6 QPO + 6 RPO + 6 QOR

= 6 QRO + 6 OQR + 6 QOR = 180◦ .

Hence P ′ lies on the circle through OQR, and this circle has radius r. Hence the circumradius of PQR
equals the circumradius of P ′QR, namely r.

Solution 2. [P. Shi; A. Wice] Let U, V,W be the centres of the circle. Then OV PW is a rhombus, so that
OP and V W intersect at right angles. Let H,J,K be the respective intersections of the pairs (OP, V W ),
(OQ, UW ), (OP, UV ). Then H (respectively J,K) is the midpoint of OP and V W (respectively OQ and
UW , OP and UV ). Triangle PQR is carried by a dilation with centre O and factor 1

2 onto HJK. Also,
HJK is similar with factor 1

2 to triangle UV W (determined by the midlines of the latter triangle). Hence
triangles PQR and UV W are congruent. But the circumcircle of triangle UV W has centre O and radius r,
so the circumradius of triangle PQR is also r.

Solution 3. [G. Zheng] Let U, V,W be the respective centres of the circumcircles of OQR, ORP , OPQ.
Place O at the centre of coordinates so that

U ∼ (r cos α, r sinα)

V ∼ (r cos β, r sinβ)

W ∼ (r cos γ, r sin γ)

for some α, β, γ. Since OV PW is a rhombus,

P ∼ (r(cos β + cos γ), r(sinβ + sin γ)) .

Similarly, Q ∼ (r(cos α + cos γ), r(sinα + sin γ), so that

|PQ| = r
√

(cos β − cos α)2 + (sinβ − sinα)2 = |UV | .

Similarly, |PR| = |UW | and |QR| = |V W |. Thus, triangles PQR and UV W are congruent. Since O is the
circumcentre of triangle UV W , the circumradius of triangle PQR equals the circumradius of triangle UV W
which equals r.

Solution 4. Let U , V , W be the respective centres of the circles QOR, ROP , POQ. Suppose that
6 OV R = 2β; then 6 OPR = β. Suppose that 6 OWQ = 2γ; then 6 OPQ = γ. Hence 6 QPR = β + γ. Let ρ
be the circumradius of triangle PQR. Then |QR| = 2ρ sin(β + γ).

Consider triangle QUR. The reflection in the axis OQ takes W to U so that 6 QUO = 6 QWO = 2γ.
Similarly, 6 RUO = 2γ, whence 6 QUR = 2(β + γ). Thus triangle QUR is isosceles with |QU | = |QR| = r
and apex angle QUR equal to 2(β + γ). Hence |QR| = 2r sin(β + γ). It follows that ρ = r.

Comment. This problem was the basis of the logo for the 40th International Mathematical Olympiad
held in 1999 in Romania.

307. Let p be a prime and m a positive integer for which m < p and the greatest common divisor of m and
p is equal to 1. Suppose that the decimal expansion of m/p has period 2k for some positive integer k,
so that

m

p
= .ABABABAB . . . = (10kA + B)(10−2k + 10−4k + · · ·)
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where A and B are two distinct blocks of k digits. Prove that

A + B = 10k − 1 .

(For example, 3/7 = 0.428571 . . . and 428 + 571 = 999.)

Solution. We have that
m

p
=

10kA + B

102k − 1
=

10kA + B

(10k − 1)(10k + 1)

whence
m(10k − 1)(10k + 1) = p(10kA + B) = p(10k − 1)A + p(A + B) .

Since the period of m/p is 2k, A 6= B and p does not divide 10k−1. Hence 10k−1 and p are coprime and so
10k − 1 must divide A + B. However, A ≤ 10k − 1 and B ≤ 10k − 1 (since both A and B have k digits), and
equality can occur at most once. Hence A + B < 2× 10k − 2 = 2(10k − 1). It follows that A + B = 10k − 1
as desired.

Comment. This problem appeared in the College Mathematics Journal 35 (2004), 26-30. In writing up
the solution, it is clearer to set up the equation and clear fractions, so that you can argue in terms of factors
of products.

308. Let a be a parameter. Define the sequence {fn(x) : n = 0, 1, 2, · · ·} of polynomials by

f0(x) ≡ 1

fn+1(x) = xfn(x) + fn(ax)

for n ≥ 0.

(a) Prove that, for all n, x,
fn(x) = xnfn(1/x) .

(b) Determine a formula for the coefficient of xk (0 ≤ k ≤ n) in fn(x).

Solution 1. The polynomial fn(x) has degree n for each n, and we will write

fn(x) =
n∑

k=0

b(n, k)xk .

Then

xnfn(1/x) =
n∑

k=0

b(n, k)xn−k =
n∑

k=0

b(n, n− k)xk .

Thus, (a) is equivalent to b(n, k) = b(n, n− k) for 0 ≤ k ≤ n.

When a = 1, it can be established by induction that fn(x) = (x + 1)n =
∑n

k=0

(
n
k

)
xn. Also, when

a = 0, fn(x) = xn + xn−1 + · · ·+ x + 1 = (xn+1 − 1)(x− 1)−1. Thus, (a) holds in these cases and b(n, k) is
respectively equal to

(
n
k

)
and 1.

Suppose, henceforth, that a 6= 1. For n ≥ 0,

fn+1(k) =
n∑

k=0

b(n, k)xk+1 +
n∑

k=0

akb(n, k)xk

=
n∑

k=1

b(n, k − 1)xk + b(n, n)xn+1 + b(n, 0) +
n∑

k=1

akb(n, k)xk

= b(n, 0) +
n∑

k=1

[b(n, k − 1) + akb(n, k)]xk + b(n, n)xn+1 ,
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whence b(n+1, 0) = b(n, 0) = b(1, 0) and b(n+1, n+1) = b(n, n) = b(1, 1) for all n ≥ 1. Since f1(x) = x+1,
b(n, 0) = b(n, n) = 1 for each n. Also

b(n + 1, k) = b(n, k − 1) + akb(n, k) (1)

for 1 ≤ k ≤ n.

We conjecture what the coefficients b(n, k) are from an examination of the first few terms of the sequence:

f0(x) = 1; f1(x) = 1 + x; f2(x) = 1 + (a + 1)x + x2;

f3(x) = 1 + (a2 + a + 1)x + (a2 + a + 1)x2 + x3;

f4(x) = 1 + (a3 + a2 + a + 1)x + (a4 + a3 + 2a2 + a + 1)x2 + (a3 + a2 + a + 1)x3 + x4;

f5(x) = (1 + x5) + (a4 + a3 + a2 + a + 1)(x + x4) + (a6 + a5 + 2a4 + 2a3 + 2a2 + a + 1)(x2 + x3) .

We make the empirical observation that

b(n + 1, k) = an+1−kb(n, k − 1) + b(n, k) (2)

which, with (1), yields
(an+1−k − 1)b(n, k − 1) = (ak − 1)b(n, k)

so that

b(n + 1, k) =
[

ak − 1
an+1−k − 1

+ ak

]
b(n, k) =

[
an+1 − 1

an+1−k − 1

]
b(n, k)

for n ≥ k. This leads to the conjecture that

b(n, k) =
(

(an − 1)(an−1 − 1) · · · (ak+1 − 1)
(an−k − 1)(an−k−1 − 1) · · · (a− 1)

)
b(k, k) (3)

where b(k, k) = 1.

We establish this conjecture. Let c(n, k) be the right side of (3) for 1 ≤ k ≤ n−1 and c(n, n) = 1. Then
c(n, 0) = b(n, 0) = c(n, n) = b(n, n) = 1 for each n. In particular, c(n, k) = b(n, k) when n = 1.

We show that
c(n + 1, k) = c(n, k − 1) + akc(n, k)

for 1 ≤ k ≤ n, which will, through an induction argument, imply that b(n, k) = c(n, k) for 0 ≤ k ≤ n. The
right side is equal to(

an − 1
an−k − 1

)
· · ·

(
ak+1 − 1

a− 1

)[
ak − 1

an−k+1 − 1
+ ak

]
=

(an+1 − 1)(an − 1) · · · (ak+1 − 1)
(an+1−k − 1)(an−k − 1) · · · (a− 1)

= c(n + 1, k)

as desired. Thus, we now have a formula for b(n, k) as required in (b).

Finally, (a) can be established in a straightforward way, either from the formula (3) or using the pair of
recursions (1) and (2).

Solution 2. (a) Observe that f0(x) = 1, f1(x) = x + 1 and f1(x)− f0(x) = x = a0xf0(x/a). Assume as
an induction hypothesis that fk(x) = xkf(1/x) and

fk(x)− fk−1(x) = ak−1xfk−1(x/a)

for 0 ≤ k ≤ n. This holds for k = 1.
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Then
fn+1(x)− fn(x) = x[fn(x)− f(n−1)(x)] + [fn(ax)− fn−1(ax)]

= an−1x2fn−1(x/a) + an−1axfn−1(x)
= anx[fn−1(x) + (x/a)fn−1(x/a) = anxfn(x/a) ,

whence

fn+1(x) = fn(x) + anxfn(x/a) = fn(x) + anx(x/a)nfn(a/x)

= xnfn(1/x) + xn+1fn(a/x) = xn+1[(1/x)fn(1/x) + fn(a/x)] = xn+1fn+1(1/x) .

The desired result follows.

Comment. Because of the appearance of the factor a − 1 in denominators, you should dispose of the
case a = 1 separately. Failure to do so on a competition would likely cost a mark.

309. Let ABCD be a convex quadrilateral for which all sides and diagonals have rational length and AC and
BD intersect at P . Prove that AP , BP , CP , DP all have rational length.

Solution 1. Because of the symmetry, it is enough to show that the length of AP is rational. The
rationality of the lengths of the remaining segments can be shown similarly. Coordinatize the situation by
taking A ∼ (0, 0), B ∼ (p, q), C ∼ (c, 0), D ∼ (r, s) and P ∼ (u, 0). Then, equating slopes, we find that

s

r − u
=

s− q

r − p

so that
sr − ps

s− q
= r − u

whence u = r − sr−ps
s−q = ps−qr

s−q .

Note that |AB|2 = p2 + q2, |AC|2 = c2, |BC|2 = (p2 − 2pc + c2) + q2, |CD|2 = (c2 − 2cr + r2) + s2 and
|AD|2 = r2 + s2, we have that

2rc = AC2 + AD2 − CD2

so that, since c is rational, r is rational. Hence s2 is rational.
Similarly

2pc = AC2 + AB2 −BC2 .

Thus, p is rational, so that q2 is rational.

2qs = q2 + s2 − (q − s)2 = q2 + s2 − [(p− r)2 + (q − s)2] + p2 − 2pr + r2

is rational, so that both qs and q/s = (qs)/s2 are rational. Hence

u =
p− r(q/s)
1− (q/s)

is rational.

Solution 2. By the cosine law, the cosines of all of the angles of the triangle ACD, BCD, ABC and
ABD are rational. Now

AP

AB
=

sin 6 ABP

sin 6 APB

and
CP

BC
=

sin 6 PBC

sin 6 BPC
.
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Since 6 APB + 6 BPC = 180◦, therefore sin 6 APB = sin 6 BPC and

AP

CP
=

AB sin 6 ABP

BC sin 6 PBC
=

AB sin 6 ABP sin 6 PBC

BC sin2 6 PBC

=
AB(cos 6 ABP cos 6 PBC − cos(6 ABP + 6 PBC))

BC(1− cos2 6 PBC)

=
AB(cos 6 ABD cos 6 DBC − cos 6 ABC)

BC(1− cos2 6 DBC)

is rational. Also AP +CP is rational, so that (AP/CP )(AP +CP ) = ((AP/CP )+1)AP is rational. Hence
AP is rational.

310. (a) Suppose that n is a positive integer. Prove that

(x + y)n =
n∑

k=0

(
n

k

)
x(x + k)k−1(y − k)n−k .

(b) Prove that

(x + y)n =
n∑

k=0

(
n

k

)
x(x− kz)k−1(y + kz)n−k .

Comments. (a) and (b) are equivalent. To obtain (b) from (a), replace x by −x/z and y by −y/z. On
the other hand, the substitution z = −1 yields (a) from (b).

The establishment of the identities involves the recognition of a certain sum which arise in the theory
of finite differences. Let f(x) be a function of x and define the following operators that take functions to
functions:

If(x) = f(x)

Ef(x) = f(x + 1) = (I + ∆)f(x)

∆f(x) = f(x + 1)− f(x) = (E − I)f(x) .

For any operator P , Pnf(x) is defined recursively by P 0f(x) = f(x) and P k+1f(x) = P (P k−1)f(x)), for
k ≥ 1. Thus Ekf(x) = f(x + k) and

∆2f(x) = ∆f(x + 1)−∆f(x) = f(x + 2)− 2f(x + 1) + f(x) = (E2 − 2E + I)f(x) = (E − I)2f(x) .

We have an operational calculus in which we can treat polynomials in I, E and ∆ as satisfying the regular
rules of algebra. In particular

Enf(x) = (I + ∆)nf(x) =
∑ (

n

k

)
∆kf(x)

and

∆nf(x) = (E − I)nf(x) =
n∑

k=0

(−1)n−k

(
n

k

)
Ekf(x) =

n∑
k=0

(−1)n−k

(
n

k

)
f(x + k) ,

for each positive integer n, facts than can be verified directly by unpacking the operational notation.

Now let f(x) be a polynomial of degree d ≥ 0. If f(x) is constant (d = 0), then ∆f(x) = 0. If d ≥ 1,
then ∆f(x) is a polynomial of degree d − 1. It follows that ∆df(x) is constant, and ∆nf(x) = 0 whenever
n > d. This yields the identity

n∑
k=0

(−1)k

(
n

k

)
f(x + k) = 0
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for all x whenever f(x) is a polynomial of degree strictly less than n.

Solution 1. [G. Zheng]

n∑
k=0

(
n

k

)
x(x + k)k−1(y − k)n−k =

n∑
k=0

(
n

k

)
x(x + k)k−1[(x + y)− (x + k)]n−k

=
n∑

k=0

n−k∑
j=0

(
n

k

)
x(x + k)k−1

(
n− k

j

)
(x + y)j(−1)n−k−j(x + k)n−k−j

=
∑

0≤k≤n−j≤n

(−1)n−k−j

(
n

k

)(
n− k

j

)
x(x + k)n−j−1(x + y)j

=
n∑

j=0

n−j∑
k=0

(−1)n−k−j

(
n

j

)(
n− j

k

)
x(x + k)n−j−1(x + y)j

=
n∑

j=0

(−1)n−j

(
n

j

)
(x + y)j

n−j∑
k=0

(−1)k

(
n− j

k

)
x(x + k)n−j−1

= (x + y)nx(x + 0)−1 + x
n−1∑
j=1

(−1)n−j

(
n

j

)
(x + y)j

n−j∑
k=0

(−1)k

(
n− j

k

)
(x + k)n−j−1 .

Let m = n− j so that 1 ≤ m ≤ n. Then

n−j∑
k=0

(−1)k

(
n− j

k

)
(x + k)n−j−1 =

m∑
k=0

(−1)k

(
m

k

)
(x + k)m−1

=
m∑

k=0

(−1)k

(
m

k

) m−1∑
l=0

(
m− 1

l

)
xm−lkl

=
m−1∑
l=0

(
m− 1

l

)
xm−l

m∑
k=0

(−1)k

(
m

k

)
kl = 0 .

The desired result now follows.

Solution 2. [M. Lipnowski] We prove that

n∑
k=0

(
n

k

)
x(x− kz)k−1(y + kz)n−k = (x + y)n

by induction. When n = 1, this becomes

1 · x(x)−1y + 1 · x(x− z)0(y + z)0 = y + x = x + y .

Assume that for n ≥ 2,

n−1∑
k=0

(
n− 1

k

)
x(x− kz)k−1(y + zk)n−k−1 = (x + y)n−1 .

Let f(y) = (x+ y)n and g(y) =
∑n

k=0

(
n
k

)
x(x−kz)k−1(y +kz)n−k. We can establish that f(y) = g(y) for all

y by showing that f ′(y) = g′(y) for all y (equality of the derivatives with respect to y) and f(−x) = g(−x)
(equality when y is replaced by −x).
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That f ′(y) = g′(y) is a consequence of the induction hypothesis and the identity
(
n
k

)
(n− k) = n

(
n−1

k

)
.

Also

g(−x) =
n∑

k=0

(
n

k

)
x(x− kz)k−1(−x + kz)n−k

= x
n∑

k=0

(−1)n−k

(
n

k

)
(x− kz)n−1 = 0 ,

by appealing to the finite differences result. The desired result now follows.
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