Problems for JANUARY

Please send your solution to
Ed Barbeau
Department of Mathematics
University of Toronto
Toronto, ON M5S 3G3
no later than February 29, 2004. It is important that your complete mailing address and your email address appear on the front page.
283. (a) Determine all quadruples (a, b, c, d) of positive integers for which the greatest common divisor of its elements is 1 ,

$$
\frac{a}{b}=\frac{c}{d}
$$

and $a+b+c=d$.
(b) Of those quadruples found in (a), which also satisfy

$$
\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=\frac{1}{a} ?
$$

(c) For quadruples (a, b, c, d) of positive integers, do the conditions $a+b+c=d$ and $(1 / b)+(1 / c)+(1 / d)=$ ($1 / a$) together imply that $a / b=c / d$?
284. Suppose that $A B C D E F$ is a convex hexagon for which $\angle A+\angle C+\angle E=360^{\circ}$ and

$$
\frac{A B}{B C} \cdot \frac{C D}{D E} \cdot \frac{E F}{F A}=1
$$

Prove that

$$
\frac{A B}{B F} \cdot \frac{F D}{D E} \cdot \frac{E C}{C A}=1
$$

285. (a) Solve the following system of equations:

$$
\begin{gathered}
\left(1+4^{2 x-y}\right)\left(5^{1-2 x+y}\right)=1+2^{2 x-y+1} \\
y^{2}+4 x=\log _{2}\left(y^{2}+2 x+1\right)
\end{gathered}
$$

(b) Solve for real values of x :

$$
3^{x} \cdot 8^{x /(x+2)}=6
$$

Express your answers in a simple form.
286. Construct inside a triangle $A B C$ a point P such that, if X, Y, Z are the respective feet of the perpendiculars from P to $B C, C A, A B$, then P is the centroid (intersection of the medians) of triangle $X Y Z$.
287. Let M and N be the respective midpoints of the sides $B C$ and $A C$ of the triangle $A B C$. Prove that the centroid of the triangle $A B C$ lies on the circumscribed circle of the triangle $C M N$ if and only if

$$
4 \cdot|A M| \cdot|B N|=3 \cdot|A C| \cdot|B C|
$$

288. Suppose that $a_{1}<a_{2}<\cdots<a_{n}$. Prove that

$$
a_{1} a_{2}^{4}+a_{2} a_{3}^{4}+\cdots+a_{n} a_{1}^{4} \geq a_{2} a_{1}^{4}+a_{3} a_{2}^{4}+\cdots+a_{1} a_{n}^{4}
$$

289. Let $n(r)$ be the number of points with integer coordinates on the circumference of a circle of radius $r>1$ in the cartesian plane. Prove that

$$
n(r)<6 \sqrt[3]{\pi r^{2}}
$$

