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304. Prove that, for any complex numbers z and w,

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣ ≤ 2|z + w| .

305. Suppose that u and v are positive integer divisors of the positive integer n and that uv < n. Is it
necessarily so that the greatest common divisor of n/u and n/v exceeds 1?

306. The circumferences of three circles of radius r meet in a common point O. The meet also, pairwise, in
the points P , Q and R. Determine the maximum and minimum values of the circumradius of triangle
PQR.

307. Let p be a prime and m a positive integer for which m < p and the greatest common divisor of m and
p is equal to 1. Suppose that the decimal expansion of m/p has period 2k for some positive integer k,
so that

m

p
= .ABABABAB . . . = (10kA + B)(10−2k + 10−4k + · · ·

where A and B are two distinct blocks of k digits. Prove that

A + B = 10k − 1 .

(For example, 3/7 = 0.428571 . . . and 428 + 571 = 999.)

308. Let a be a parameter. Define the sequence {fn(x) : n = 0, 1, 2, · · ·} of polynomials by

f0(x) ≡ 1

fn+1(x) = xfn(x) + fn(ax)

for n ≥ 0.

(a) Prove that, for all n, x,
fn(x) = xnfn(1/x) .

(b) Determine a formula for the coefficient of xk (0 ≤ k ≤ n) in fn(x).

309. Let ABCD be a convex quadrilateral for which all sides and diagonals have rational length and AC and
BD intersect at P . Prove that AP , BP , CP , DP all have rational length.

310. (a) Suppose that n is a positive integer. Prove that

(x + y)n =
n∑

k=0

(
n

k

)
x(x + y)k−1(y − k)n−k .

(b) Prove that

(x + y)n =
n∑

k=0

(
n

k

)
x(x− kz)k−1(y + kz)n−k .
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