
Solutions and Comments

43. Two players play a game: the first player thinks of n integers x1, x2, · · ·, xn, each with one digit,
and the second player selects some numbers a1, a2, · · ·, an and asks what is the value of the sum
a1x1 + a2x2 + · · ·+ anxn. What is the minimum number of questions used by the second player to find
the integers x1, x2, · · ·, xn?

Solution. We are going to prove that the second player needs only one question to find the integers x1,
x2, · · ·, xn. Indeed, let him choose a1 = 100, a2 = 1002, · · ·, an = 100n and ask for the value of the sum

Sn = 100x1 + 1002x2 + · · ·+ 100nxn .

Note that ∣∣∣∣100x1 + 1002x2 + · · ·+ 100n−1xn−1

100n

∣∣∣∣
≤ 100|x1|+ 1002|x2|+ · · ·+ 100n−1|xn−1|

100n

≤ 9(100 + 1002 + · · ·+ 100n−1)
100n

<
102n−1

102n
=

1
10

.

Hence ∣∣∣∣ Sn100n
− xn

∣∣∣∣ =
100x1 + 1002x2 + · · ·+ 100n−1xn−1

100n
<

1
10

,

and xn can be obtained. Now, we can find the sum

Sn−1 = Sn − 100nxn = 100x1 + 1002x2 + · · ·+ 100n−1xn−1

and similarly obtain xn−1. The procedure continues until all the numbers are found.

44. Find the permutation {a1, a2, · · · , an} of the set {1, 2, · · · , n} for which the sum

S = |a2 − a1|+ |a3 − a2|+ · · ·+ |an − an−1|

has maximum value.

Solution. Let a = (a1, a2, · · · , an) be a permutation of {1, 2, · · · , n} and define

f(a) =
n−1∑
k=1

|ak+1 − ak|+ |an − a1| .

With an+1 = a1 and ε0 = εn, we find that

f(a) =
n∑
k=1

εk(ak+1 − ak) =
n∑
k=1

(εk−1 − εk)ak

where ε1, ε2, · · ·, εn are all equal to 1 or −1. Thus

f(a) =
n∑
k=1

βkk .

where each βk is one of −2, 0, 2, and
∑n
k=1 βk = 0 (there are the same number of positive and negative

numbers among the βk).

1



Therefore
f(a) = 2(x1 + x2 + · · ·+ xm)− 2(y1 + y2 + · · ·+ ym)

where x1, · · · , xm, y1, · · · , ym ∈ {1, 2, · · · , n} and are distinct from each other. Hence f(a) is maximum when
{x1, x2, · · · , xm} = {n, n− 1, · · · , n−m+ 1}, {y1, y2, · · · , ym} = {1, 2, · · · ,m} with m = bn/2c, i.e., m is as
large as possible. The maximum value is

2
⌊
n

2

⌋(
n−

⌊
n

2

⌋)
.

This value is attained by taking

a = (s+ 1, 1, s+ 2, 2, · · · , 2s, s) when n = 2s

and
a = (s+ 2, 1, s+ 3, 2, · · · , 2s+ 1, s, s+ 1) when n = 2s+ 1 .

Since |an − a1| = 1 for these permutations, the maximum value of the given expression is

2
⌊
n

2

⌋(
n−

⌊
n

2

⌋)
− 1 .

This is equal to 2s2 − 1 when n = 2s, and to 2s(s+ 1)− 1 when n = 2s+ 1.

45. Prove that there is no nonconstant polynomial p(x) = anx
n+an−1x

n−1+· · ·+a0 with integer coefficients
ai for which p(m) is a prime number for every integer m.

Solution. Let a be an integer, for which p(a) 6= −1, 0, 1. (If there is no such a, then p cannot take all
prime values.) Suppose that b is a prime divisor of p(a). Now, for any integer k,

p(a+ kb)− p(a) = an[(a+ kb)n − an] + an−1[(a+ kb)n−1 − an−1] + · · ·+ a1[(a+ kb)− a] .

It can be seen that b is a divisor of p(a+ kb)− p(a) and hence of p(a+ kb) for every integer k. Both of the
equations p(x) = b and p(x) = −b have at most finitely many roots. So some of the values of p(a+ kb) must
be composite, and the result follows.

Comment. It should have been stated in the problem that the polynomial was nonconstant, or had
positive degree.

46. Let a1 = 2, an+1 = an+2
1−2an

for n = 1, 2, · · ·. Prove that

(a) an 6= 0 for each positive integer n;

(b) there is no integer p ≥ 1 for which an+p = an for every integer n ≥ 1 (i.e., the sequence is not
periodic).

Solution. (a) We prove that an = tannα where α = arctan 2 by mathematical induction. This is true
for n = 1. Assume that it holds for n = k. Then

ak+1 =
2 + an
1− 2an

=
tanα+ tannα

1− tanα tannα
= tan(n+ 1)α ,

as desired.

Suppose that an = 0 with n = 2m+ 1. Then a2m = −2. However,

a2m = tan 2mα =
2 tanmα

1− tan2mα
=

2am
1− a2

m

,
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whence
2am

1− a2
m

= −2⇔ am =
1±
√

5
2

,

which is not possible, since am has to be rational.

Suppose that an = 0 with n = 2k(2m+ 1) for some positive integer k. Then

0 = an = tan 2 · 2k−1(2m+ 1)α =
2 tan 2k−1(2m+ 1)

1− tan2 2k−1(2m+ 1)
=

2an/2
1− a2

n/2

,

so that an/2 = 0. Continuing step by step backward, we finally come to a2m+1 = 0, which has already been
shown as impossible.

(b) Assume, if possible, that the sequence is periodic, i.e., there is a positive integer p such that
an+p = an for every positive integer n. Thus

tan(n+ p)α− tannα =
sin pα

cos(n+ p)α cosnα
= 0 .

Therefore sin pα = 0 and so ap = tan pα = 0, which, as we have shown, is impossible. The desired result
follows.

47. Let a1, a2, · · · , an be positive real numbers such that a1a2 · · · an = 1. Prove that

n∑
k=1

1
s− ak

≤ 1

where s = 1 + a1 + a2 + · · ·+ an.

Solution. First, we recall that Chebyshev’s Inequalities:
(1) if the vectors (a1, a2, · · · , an) and (b1, b2, · · · , bn) are similarly sorted (that is, both rising or both falling),
then

a1b1 + · · ·+ anbn
n

≥ a1 + · · ·+ an
n

· b1 + · · ·+ bn
n

;

(2) if the vectors (a1, a2, · · · , an) and (b1, b2, · · · , bn) are oppositely sorted (that is, one rising and the other
falling), then

a1b1 + · · ·+ anbn
n

≤ a1 + · · ·+ an
n

· b1 + · · ·+ bn
n

.

If x1, x2, · · · , xn are positive real numbers with x1 ≤ x1 ≤ · · · ≤ xn, then xn1 ≤ xn2 ≤ · · · ≤ xnn. From
Chebyshev’s Inequality (1), we have, for each k = 1, 2, · · · , n, that

n∑
i=1,i 6=k

xni =
n∑

i=1,i 6=k

xn−1
i xi ≥

1
n− 1

( n∑
i=1,i 6=k

xi

)( n∑
i=1,i 6=k

xn−1
i

)
.

The Arithmetic-Geometric Means Inequality yields

n∑
i=1,i 6=k

xn−1
i ≥ (n− 1)x1 · · ·xk−1xk+1 · · ·xn ,

for k = 1, · · · , n. Therefore,

n∑
i=1,i 6=k

xni ≥ (x1 · · ·xk−1xk+1 · · ·xn)
n∑

i=1,i 6=k

xi .
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for each k. This inequality can also be written

xn1 + · · ·+ xnk−1 + xnk+1 + · · ·xnn + x1x2 · · ·xn

≥ x1 · · ·xk−1xk+1 · · ·xn(x1 + x2 + · · ·+ xn) ,

or

1
x1x2 · · ·xn + xn1 + · · ·+ xnk−1 + xnk+1 + · · ·+ xnn

≤ 1
x1 + x2 + · · ·+ xn

· 1
x1 · · ·xk−1xk+1 · · ·xn

.

Adding up these inequalities, for 1 ≤ k ≤ n, we get

n∑
k=1

1
x1x2 · · ·xn + xn1 + · · ·+ xnk−1 + xnk+1 + . . . xnn

≤ 1
x1x2 · · ·xn

.

Now, let the xnk be equal to the ak in increasing order to obtain the desired result.

48. Let A1A2 · · ·An be a regular n−gon and d an arbitrary line. The parallels through Ai to d intersect its
circumcircle respectively at Bi (i = 1, 2, · · · , n. Prove that the sum

S = |A1B1|2 + · · ·+ |AnBn|2

is independent of d.

Solution. Select a system of coordinates so that O is the centre of the circumcircle and the x−axis (or
real axis) is orthogonal to d. Without loss of generality, we may assume that the radius of the circumcircle
is of length 1. Let ak the the affix (complex number representative) of Ak (1 ≤ k ≤ n). Then the ak
are solutions of the equation zn = λ, where λ is a complex number with |λ| = 1. Since Ak and Bk are
symmetrical with respect to the real axis, the affix of Bk is ak, the complex conjugate of ak, for 1 ≤ k ≤ n,
Thus

AkB
2
k = |ak − ak|2 = (ak − ak)(ak − ak) = 2akak − a2

k − ak2 = 2− ak − ak2 .

Summing these inequalities yields that

n∑
k=1

AkB
2
k = 2n−

n∑
k=1

a2
k −

n∑
k=1

ak
2 .

Since {ak : 1 ≤ k ≤ n} is a complete set of solutions of the equation zn = λ, their sum and the sum of their
pairwise products vanishes. Hence

0 =
n∑
k=1

a2
k =

n∑
k=1

ak
2 .

Hence
∑n
k=1AkB

2
k = 2n .
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