
Solutions

49. Find all ordered pairs (x, y) that are solutions of the following system of two equations (where a is a
parameter):

x− y = 2(
x− 2

a

)(
y − 2

a

)
= a2 − 1 .

Find all values of the parameter a for which the solutions of the system are two pairs of nonnegative
numbers. Find the minimum value of x+ y for these values of a.

Solution. We need to assume that a 6= 0. Substitute y = x− 2 into the second equation to obtain

x2 − 2x− 4
a

(x− 1) +
4
a2

= a2 − 1 .

This can be manipulated to [
x−

(
1 +

2
a

)]2

= a2 ,

from which we find that

(x, y) = (1 + (2/a) + a,−1 + (2/a) + a), (1 + (2/a)− a,−1 + (2/a)− a) .

For x and y to be nonnegative for both solutions, we require all of the four inequalities:

a(a2 + a+ 2) ≥ 0 , a(a2 − a+ 2) ≥ 0 ,

a(a− 2)r(a+ 1) = a(a2 − a− 2) ≤ 0 , a(a+ 2)(a− 1) = a(a2 + a− 2) ≤ 0 .

The last two equations entail that a ≤ −2 or 0 < a ≤ 1. When a ≤ −2, the first two inequalities fail to hold,
while if 0 < a ≤ 1, all four equations hold. Thus, the solutions are two pairs of nonnegative numbers when
0 < a ≤ 1.

When both x and y are nonnegative, then x + y ≥ x − y = 2. When a = 1, we obtain the solutions
(x, y) = (4, 2) and (2, 0), and in the latter case, x+ y = 2. Hence the minimum value of x+ y is 2.

Comment. The minimum of x+ y can be also obtained with more effort directly from the solutions in
terms of a. Now x+ y = (4/a)± 2a. Since(

4
a

+ 2a
)
− 6 =

2(2− a)(1− a)
a

≥ 0

for 0 < a ≤ 1, (4/a) + 2a assumes its minimum value of 6 when a = 1. Since(
4
a
− 2a

)
− 2 =

2(2 + a)(1− a)
a

≥ 0

for 0 < a ≤ 1, (4/a) − 2a assumes its minimum value of 2 when a = 1. Hence the minimum possible value
of x+ y is 2.

50. Let n be a natural number exceeding 1, and let An be the set of all natural numbers that are not
relatively prime with n (i.e., An = {x ∈ N : gcd (x, n) 6= 1}. Let us call the number n magic if for each
two numbers x, y ∈ An, their sum x+ y is also an element of An (i.e., x+ y ∈ An for x, y ∈ An).

(a) Prove that 67 is a magic number.
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(b) Prove that 2001 is not a magic number.

(c) Find all magic numbers.

Solution. [O. Bormashenko] (a) 67 is prime, so that all numbers that are not relatively prime with 67
and are elements of A67 are the multiples of 67. The sum of two such numbers is also a multiple of 67, and
hence belongs to A67. Therefore 67 is a magic number.

(b) 2001 = 3 × 23 × 29. Now 3 and 23 belong to A2001, but 26 = 3 + 23 does not, because gcd (26,
2001) is equal to 1. Thus, 2001 is not a magic number.

(c) First, let us prove that all prime powers are magic numbers. Suppose that n = pk for some prime
p and positive integer k. Then the numbers not relatively prime to n are precisely those that are divisible
by p (as this is the only prime that can divide any divisor of n). The sum of any two such numbers is also
divisible by p, so that An is closed under addition and n is magic.

Now suppose that n is not a power of a prime. Then n = ab, where a and b are two relatively prime
numbers exceeding 1. Clearly, a and b belong to An. However, gcd(a, a+b) = gcd(a, b) = 1, and gcd(b, a+b)
= gcd(b, a) = 1, so that a+ b is relatively prime to both a and b, and hence to n = ab. Thus, a+ b 6∈ An, so
that n is not magic.

We conclude that the set of prime powers equals the set of magic numbers.

51. In the triangle ABC, AB = 15, BC = 13 and AC = 12. Prove that, for this triangle, the angle bisector
from A, the median from B and the altitude from C are concurrent (i.e., meet in a common point).

Solution. [K. Ho] Denote by E the intersection of AC with the median from B (so that E is the midpoint
of AC), by F the intersection of AB with the altitude from C (so that CF ⊥ AB), by D the intersection of
BC and the bisector from A, and by x the length of AF . ThenBF = AB−AF = 15−x. By the angle-bisector
theorem, CD : DB = AC : AB = 12 : 15 = 4 : 5. By the pythagorean theorem for the triangles AFC and
BFC, AC2 −AF 2 = CF 2 = BC2 −BF 2 ⇔ 122 − x2 = 132 − (15− x)2 = −56 + 30x− x2. Thus, x = 20/3
and 15 − x = 25/3, so that AF : FB = 4 : 5. Since (AF/FB)(BD/DC)/(CE/EA) = (4/5)(5/4)1 = 1,
Ceva’s theorem tells us that AD, BE and CF are concurrent.

52. One solution of the equation 2x3 +ax2 + bx+ 8 = 0 is 1 +
√

3. Given that a and b are rational numbers,
determine its other two solutions.

Solution 1. [R. Barrington Leigh] Since 1 +
√

3 satisfies the given equation,

0 = 2(1 +
√

3)3 + a(1 +
√

3)2 + b(1 +
√

3) + 8 = (28 + 4a+ b) + (12 + 2a+ b)
√

3 .

Since a and b are rational, this is possible only when 28 + 4a+ b = 12 + 2a+ b = 0, or (a, b) = (−8, 4). The
equation is thus 0 = 2x3 − 8x2 + 4x+ 8. By inspection, we find that 2 is a root, and so the three roots turn
out to be 2, 1 +

√
3 and 1−

√
3.

Comment. Once 2 and 1 +
√

3 are known to be roots, we can get the third root by noting that the sum
of the roots is −(−8)/2 = 4.

Solution 2. A more structural way of getting the result is to note that the mapping that takes a
surd u + v

√
3 (with u and v rational) to its surd conjugate u − v

√
3 preserves addition, subtraction and

multiplication (i.e., the surd conjugate of the sum (resp. product) or two surds is equal to the sum (resp.
product) of the surd conjugates. The surd conjugate of a rational is the rational itself. Tranforming all
the elements of the equation to their surd conjugates, gives the same equation with x replaced by its surd
conjugate. Thus, the surd conjugate 1−

√
3 of 1 +

√
3 also satisfies the equation. The quadratic with these

as roots is x2 − 2x− 2, and this quadratic must be a factor of the given cubic. Since 2x3 + ax2 + bx+ 8 =
(x2 − 2x − 2)(2 + [a + 4]x) + (2a + b + 12)x + (16 + 2a), we must have 2a + b + 12 = 16 + 2a = 0, whence
(a, b) = (−8, 4), and

2x3 + ax2 + bx+ 8 = 2(x2 − 2x− 2)(x− 2)
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and the third root is 2.

53. Prove that among any 17 natural numbers chosen from the sets {1, 2, 3, · · · , 24, 25}, it is always possible
to find two whose product is a perfect square.

Solution. [K. Ho] Consider the following 16 sets: {1, 4, 9, 16, 25}, {2, 8, 18}, {3, 12}, {5, 20}, {6, 24}, {7},
{10}, {11}, {13}, {14}, {15}, {17}, {19}, {21}, {22}, {23}. In any of the sets with more than one element,
the product of any two elements is a perfect square. Any choice of 17 numbers from among these sets must,
by the Pigeonhole Principle, yield at least two from the same set. The product of these two must be a square.
The desired result follows.

54. A circle has exactly one common point with each of the sides of a (2n+ 1)−sided polygon. None of the
vertices of the polygon is a point of the circle. Prove that at least one of the sides is a tangent of the
circle.

Solution. [J.Y. Jin] Assume that none of the sides is tangent to the circle. Let A1, A2, · · · , A2n−1 be the
consecutive vertices of a (2n + 1)−sided polygon. Each side of the polygon has exactly one common point
with the circle, none of the vertices lies on the circle and, by assumption, none of the sides is tangent to the
circle. Therefore, for each side, one of the endpoints lies inside the circle and the second endpoint lies outside
the circle. Colour the vertices inside the circle blue and the ones outside the circle red. Apparently, the
colours of the consecutive vertices alternate (i.e., blue, red, blue, red, etc.). Since there are 2n+ 1 vertices,
A1 and A2n+1 must have the same colour. However, these two vertices are the endpoints of a side of the
polygon and so they cannot have the same colour. Thus, the assumption leads to a contradiction, and so at
least one of the sides is tangent to the circle.
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