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EDITORIAL

Shawn Godin

We have been working on a few new features this volume. The Contest
Corner started earlier this year featuring problems that have appeared in math-
ematics contests at the high school and undergraduate levels. We are starting to
receive solutions to these problems and we look forward to more solutions from
our readers. The solutions will start to appear next volume.

Last issue saw the first Department Highlight. These will appear every second
issue and give our readers some insight into the programs and activities at various
mathematics departments across Canada.

Last issue we also re-launched the Problem of the Month. A column of the
same name appeared in the Mathematical Mayhem section for years and presented
the discussion of a problem from a high school mathematics contest. With the
re-launch, we are keeping the same format, yet we will be including any problem
that would be of interest to readers of Crux Mathematicorum. This column
will be dedicated to the former Editor-in-Chief of Crux Mathematicorum and
my personal friend and mentor, the late Jim Totten. Jim had a great love of
mathematics and shared that love with his students and others through his problem
of the week, his work on mathematics contests and outreach programs. We will
feature problems in this section that we hope Jim would have enjoyed.

This issue we introduce a new column, the Problem Solver’s Toolkit. This
will be similar to Michel Bataille’s Focus On . . . , which also started to appear
this volume, although it will be a bit more elementary in nature. Problem Solver’s
Toolkit will feature techniques that will be of use to mathematical problem solvers
at all levels.

We hope that you enjoy our new problem column and other features. We
always welcome your feedback.

Shawn Godin

Copyright c© Canadian Mathematical Society, 2013
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MAYHEM SOLUTIONS

Mathematical Mayhem is being reformatted as a stand-alone mathematics
journal for high school students. Solutions to problems that appeared in the last
volume of Crux will appear in this volume, after which time Mathematical
Mayhem will be discontinued in Crux. New Mayhem problems will appear
when the journal is relaunched in 2013.

M495. Proposed by the Mayhem Staff.

All possible lines are drawn through the point (0, 0) and the points (x, y),
where x and y are whole numbers with 1 ≤ x, y ≤ 10. How many distinct lines
are drawn?

Solution by Florencio Cano Vargas, Inca, Spain.

Since the lines pass by (0, 0), each line is characterized by a single parameter:
the slope m and counting the lines amounts to counting all possible values of the
slope. Since m = y

x , the different values of the slope are the irreducible fractions
y
x with 1 ≤ x, y ≤ 10. The boundaries are 1

10 ≤ m ≤
10
1 .

Let us call N the number of lines, N [m < 1] the number of lines with m < 1
and N [m > 1] the number of lines with m > 1. By symmetry around the line
x = y (i.e. m = 1), we have N [m < 1] = N [m > 1] and the requested number can
be written as:

N = 2N [m < 1] + 1

where the last term accounts for the case m = 1 which is considered separately.
To evaluate N [m < 1] we still have to count the number of irreducible

fractions y
x with 1 ≤ y < x ≤ 10. We study the different cases for x:

x = 1. This case gives no values of m < 1.
x = 2. We look for irreducible fractions y

2 , i.e., values of y relatively prime
to 2, which is just y = 1.

x = 3. We look for irreducible fractions y
3 , i.e., values of y relatively prime

to 3, which are two values y = 1, 2.
From these cases it can be inferred that we look for the number of values of

y relatively prime to x and which are smaller than x. This is just Euler’s totient
function ϕ(x) (Euler’s totient function ϕ(n) is defined as the number of positive
integers less than or equal to n that are relatively prime to n. We are looking for
the number of positive integers strictly less than n which are relatively prime to
n, but this subtlety makes no difference since a number is not relatively prime to
itself.) Then we can write:

N [m < 1] =
10X
x=2

ϕ(x) = 1 + 2 + 2 + 4 + 2 + 6 + 4 + 6 + 4 = 31

and the final answer is N = 2 · 31 + 1 = 63 different lines.
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Also solved by KONSTANTINOS DAGIADAS, Agrinio, Greece; GESINE GEUPEL,
student, Max Ernst Gymnasium, Brühl, NRW, Germany; RICARD PEIRÓ, IES “Abastos”,
Valencia, Spain; CÁSSIO DOS SANTOS SOUSA, Instituto Tecnológico de Aeronáutica, São
Paulo, Brazil; and KONSTANTINE ZELATOR, University of Pittsburgh, Pittsburgh, PA, USA.

M496. Proposed by Sally Li, student, Marc Garneau Collegiate Institute,
Toronto, ON.

Show that if we write the numbers from 1 to n around a circle, in any order,
then, for all x = 1, 2, . . . , n, we are guaranteed to find a block of x consecutive

numbers that add up to at least

¡
x(n+ 1)

2

¤
. Here dye is the ceiling function, that

is, the least integer greater than or equal to y. So d6.2e = 7, dπe = 4, d−8.3e = −8
and d10e = 10.

Solution by Florencio Cano Vargas, Inca, Spain.

Let us first note that the sum of all the numbers of the circle is given by
n(n+1)

2 .
Let x < n be the number of consecutive numbers we take at a time. For a

given x we have n different combinations of consecutive numbers and each number
of the circle enters in x combinations. If we define Sk as the sum of the numbers in
the kth combination (k = 1, . . . , n), then the sum of the numbers contained in all
the combinations {S1, S2, . . . , Sn} is x times the sum of the numbers of the circle:

S1 + S2 + · · ·+ Sn = x · n(n+ 1)

2
(1)

hence
S1 + S2 + · · ·+ Sn

n
=
x(n+ 1)

2
.

Then the problem is equivalent to prove that in an arithmetic mean of pos-
itive integers, there is at least one which is larger than or equal to the mean. Let
us suppose that it is not so, and that all Sk satisfy:

Sk <
x(n+ 1)

2
, k = 1, . . . , n,

but then

S1 + S2 + · · ·+ Sn < x · n(n+ 1)

2
,

which contradicts (1). Therefore, there must be at least some Sk ≥ x(n+1)
2 .

Since Sk is integer for any k, but x(n+1)
2 isn’t necessarily an integer, then we

can strengthen the claim, that is, there will be at least one k for which

Sk ≥
¡
x(n+ 1)

2

¤
.

It remains to prove the case x = n. In that case, the only block is the whole set

of numbers, whose sum is n(n+1)
2 =

 
x(n+1)

2

£
, which completes the proof.

Copyright c© Canadian Mathematical Society, 2013
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Also solved by the proposer.

M497. Proposed by Pedro Henrique O. Pantoja, student, UFRN, Brazil.

Find all integers a, b, c where c is a prime number such that ab+c and ab−c
are both perfect squares.

Solution by David E. Manes, SUNY at Oneonta, Oneonta, NY, USA.

Assume c is an odd prime and ab+ c = m2 and ab− c = n2 for some integers
m and n. Subtracting the two equations yields 2c = m2 − n2 = (m+ n)(m− n).
Unique factorization then implies m−n = 2 and m+n = c, which are contradictory
equations since m ± n always have the same parity. Hence, if c is an odd prime,
there are no integers a, b such that ab + c and ab − c are both perfect squares.

However, if c = 2, then ab + c = m2 and ab − c = n2 imply m2 − n2 =
(m+n)(m−n) = 4. Therefore, eitherm+n = 4 andm−n = 1 orm+n = m−n = 2
by unique factorization. As noted above, the equations m+ n = 4 and m− n = 1
are contradictory. If m+n = m−n = 2, then m = 2 and n = 0. Therefore ab = 2,
whence a = 2 and b = 1. Thus, (a, b, c) = (2, 1, 2) is the unique solution.

Also solved by the proposer.

M498. Proposed by Bruce Shawyer, Memorial University of Newfoundland,
St. John’s, NL.

Right triangle ABC has its right angle at C. The two sides CB and CA are
of integer length. Determine the condition for the radius of the incircle of triangle
ABC to be a rational number.

Solution by Cássio dos Santos Sousa, Instituto Tecnológico de Aeronáutica, São
Paulo, Brazil.

Take BC = a, AC = b, and AB = c. To calculate the radius r of the incircle
of triangle ABC, we may use the figure below.

A

BC a

b
c

r r

r

As the incenter is the intersection of the angle bisectors, there will be three
pairs of congruent triangles formed (one shaded from each pair), each can be
proved using AAS comparison (one of the angles comes from the bisection, the
other angle is 90◦, and the common side has length r). Then, from the triangles
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formed with vertex A:

b− r = c− (a− r)

r =
a+ b− c

2
.

We were given that a and b are integers, hence, if we want a rational value for r,
then c must be rational. The Pythagorean theorem gives c2 = a2 + b2, an integer,
so c is either integer or irrational. If we want r to be rational, then c must be an
integer.

To find a and b such that
√
a2 + b2 will be an integer value, we may use

Euclid’s Formula:

a = k(m2 − n2)

b = k(2mn)

c = k(m2 + n2)

If k,m and n are integers, and m > n, then (a, b, c) will be a Pythagorean
triple, and then r will be a rational value.

Also solved by KONSTANTINOS DAGIADAS, Agrinio, Greece; GESINE GEUPEL,
student, Max Ernst Gymnasium, Brühl, NRW, Germany; RICARD PEIRÓ, IES “Abastos”,
Valencia, Spain; CÁSSIO DOS SANTOS SOUSA, Instituto Tecnológico de Aeronáutica, São
Paulo, Brazil; KONSTANTINE ZELATOR, University of Pittsburgh, Pittsburgh, PA, USA; and
the proposer.

M499. Proposed by Neculai Stanciu, George Emil Palade Secondary School,
Buzău, Romania.

Two circles of radius 1 are drawn so that each
circle passes through the centre of the other circle.
Find the area of the goblet like region contained
between the common radius, the circumferences
and one of the common tangents as shown in the
diagram to the right.

Solution by Gesine Geupel, student, Max Ernst Gymnasium, Brühl, NRW,
Germany.

F
A B

C

D

Let A, B, C, and D be the points as shown
in the figure. Let F be the darkly shaded area,
that is, half of the upper part of the goblet. Tri-
anglesABC andABD are equilateral, since each
side is a radius of one of the circles. By sym-
metry, the second half of the upper part of the
goblet, the part beside F , is equal to the shaded
area above F .

Hence, the area of the upper part of the
goblet, 2F , is equal to the area of a 120◦ sector, minus the area of triangle ACD.

Copyright c© Canadian Mathematical Society, 2013
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Note that triangles AEC, BEC, AED and BED are congruent by hypotenuse-
side, hence the [ACD] = [AEC] + [AED] = [AEC] + [BEC] = [ABC] (where
[XY Z] represents the area of triangle XY Z). Thus

2F =
π

3
−
√

3

4
.

G

E
B

H I

D

Let E, H and I be the points as shown in the diagram.
Let G be the darkest shaded area, that is, half of the lower part
of the goblet. Looking at the rectangle BEHI with sides 1 and
1
2 , it is broken into three parts: half of the base of the goblet
(G), triangle BED and sector BDI. The triangle is half of an
equilateral triangle, and the sector has angle 30◦, hence

G =
1

2
−
√

3

8
− π

12
.

Thus the area of the goblet is

2F + 2G =
π

3
−
√

3

4
+ 2

�
1

2
−
√

3

8
− π

12

�
= 1 +

π

6
−
√

3

2

.
= 0.6576.

Also solved by FLORENCIO CANO VARGAS, Inca, Spain; ANDHIKA GILANG,
student, SMPN 8, Yogyakarta, Indonesia; THARIQ SURYA GUMELAR, student, SMPN 8,
Yogyakarta, Indonesia; RICARD PEIRÓ, IES “Abastos”, Valencia, Spain; ALMER
FANDRIYANTO, student, SMAN 25, Bandung, Indonesia; KONSTANTINE ZELATOR, Uni-
versity of Pittsburgh, Pittsburgh, PA, USA; and the proposer. One correct solution with no
name on it and one incorrect solution were also received.

M500. Proposed by Edward T.H. Wang and Dexter S.Y. Wei, Wilfrid Laurier
University, Waterloo, ON.

Let N denote the set of natural numbers.

(a) Show that if n ∈ N, there do not exist a, b ∈ N such that
[a, b]

a+ b
= n, where

[a, b] denotes the least common multiple of a and b.

(b) Show that for any n ∈ N, there exist infinitely many triples (a, b, c) of natural

numbers such that
[a, b, c]

a+ b+ c
= n, where [a, b, c] denotes the least common

multiple of a, b and c.

Solution by Florencio Cano Vargas, Inca, Spain.

(a) Let us suppose that for a given n ∈ N, there exist a, b ∈ N that satisfy
the condition given in the problem. We can write a = da′, b = db′ where
d = gcd(a, b). Then gcd(a′, b′) = 1 and [a, b] = da′b′ so the condition of the
problem can be rewritten as:

a′b′

a′ + b′
= n.

Crux Mathematicorum, Vol. 38(6), June 2012
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First of all note that since a′ and b′ are relatively prime and we cannot have
a′ + b′ = 1, then a′ + b′ 6= 1 must divide a′b′.

Let p > 1 be any prime common factor of a′b′ and a′ + b′. Since a′ and b′

are relatively prime they don’t share any prime factor, and therefore p is a
factor either of a′ or b′. Let us assume without loss of generality that it is a
factor of a′, i.e. a′ = ps for some integer s. Then for some integer q

a′ + b′ = pq ⇒ ps+ b′ = pq ⇒ b′ = p(q − s)

and then p is also a factor of b′ which contradicts the fact that gcd(a′, b′) = 1.
This means that a′b′ and (a′ + b′) are relatively prime and then the fraction
a′b′

a′+b′ is irreducible and n /∈ N, which contradicts the initial assumption.

(b) We can look for triples (a, b, c) such that a = a′d, b = b′d, c = c′d with
gcd(a, b, c) = d and with a′, b′, c′ pairwise relatively prime. Then we can
write lcm(a, b, c) = da′b′c′ and the condition of the problem can be rewritten
as:

a′b′c′

a′ + b′ + c′
= n.

To enforce this property let us choose b′ = a′ + 1, which is always relatively
prime with a′ and c′ = 1. We end up with a condition for a′:

a′(a′ + 1)

a′ + (a′ + 1) + 1
= n⇔ a′(a′ + 1)

2(a′ + 1)
= n⇔ a′ = 2n

which gives b′ = 2n + 1 and c′ = 1. Hence a solution for a given n ∈ N is
the infintie set of triples:

(a, b, c) = (2nd, 2nd+ d, d), d ∈ N.

Also solved by DAVID E. MANES, SUNY at Oneonta, Oneonta, NY, USA;
CÁSSIO DOS SANTOS SOUSA, Instituto Tecnológico de Aeronáutica, São Paulo, Brazil;
KONSTANTINE ZELATOR, University of Pittsburgh, Pittsburgh, PA, USA; and the proposers.

Copyright c© Canadian Mathematical Society, 2013
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THE CONTEST CORNER
No. 6

Shawn Godin

The Contest Corner est une nouvelle rubrique offerte pas Crux Mathematicorum,
comblant ainsi le vide suite à la mutation en 2013 de Mathematical Mayhem et Skoliad
vers une nouvelle revue en ligne. Il s’agira d’un amalgame de Skoliad, The Olympiad
Corner et l’ancien Academy Corner d’il y a plusieurs années. Les problèmes en vedette
seront tirés de concours destinés aux écoles secondaires et au premier cycle universi-
taire ; les lecteurs seront invités à soumettre leurs solutions ; ces solutions commenceront
à parâıtre au prochain numéro.

Les solutions peuvent être envoyées à : Shawn Godin, Cairine Wilson
S.S., 975 Orleans Blvd., Orleans, ON, CANADA, K1C 2Z5 ou par couriel à
crux-contest@cms.math.ca.

Toutes solutions aux problèmes dans ce numéro doivent nous parvenir au plus tard
le 1 decembre 2013.

Chaque problème sera publié dans les deux langues officielles du Canada
(anglais et français). Dans les numéros 1, 3, 5, 7 et 9, l’anglais précédera le français,
et dans les numéros 2, 4, 6, 8 et 10, le français précédera l’anglais. Dans la section des
solutions, le problème sera publié dans la langue de la principale solution présentée.

La rédaction souhaite remercier Rolland Gaudet, de Université de Saint-Boniface,
Winnipeg, MB, d’avoir traduit les problèmes.

CC26. Une fonction f vérifie f(1) = 2, et aussi, pour tout entier positif n > 1,

f(1) + f(2) + f(3) + · · ·+ f(n) = n2f(n).

Déterminer la valeur de f(2013).

CC27. Sur chacune des faces d’un cube n × n × n, on dessine un grillage de
n2 petits carrés. On trace alors un chemin de (0, 0, 0) à (n, n, n) en utilisant, sans
reculs, des côtés des petits carrés. Déterminer le nombre de tels chemins.

CC28. Le polynôme quartique P (x) vérifie P (1) = 0. Aussi, il atteint sa valeur
maximale de 3 au deux valeurs x = 2 et x = 3. Calculer P (5).

CC29. Considérer trois parallélogrammes P1, P2 et P3. Le parallélogramme P3

se situe à l’intérieur du parallélogramme P2, et ses sommets se trouvent sur les
côtés de P2. De façon similaire, le parallélogramme P2 se situe à l’intérieur du
parallélogramme P1, et ses sommets se trouvent sur les côtés de P1. Enfin, les
côtés de P3 sont parallèles aux côtés de P1. Démontrer qu’un des côtés de P3 a
une longueur au moins la moitié de la longueur du côté parallèle de P1.

Crux Mathematicorum, Vol. 38(6), June 2012
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CC30. Deux enfants égöıstes s’amusent au jeu suivant. Ils commencent avec un
bol contenant N bonbons, le nombre N étant connu des deux enfants. Tour à tour,
chaque enfant prend (si possible) un bonbon ou plus, mais sujet à la restriction de
ne jamais prendre plus que la moitié des bonbons restants. Le gagnant n’est pas
l’enfant ayant le plus grand nombre de bonbons à la fin, mais le dernier à pouvoir
en prendre.
À titre d’exemple, s’il y a 3 bonbons au départ, le premier joueur doit en prendre
un seul, car deux dépasse la moitié des bonbons disponibles à ce moment ; ensuite,
le deuxième joueur est forcé d’en prendre un seul, laissant un bonbon dans le bol ;
le premier joueur ne peut plus en prendre et perd le jeu.
(a) Démontrer que si le jeu démarre avec 2000 bonbons, alors le premier joueur
gagne.
(b) Démontrer que si le jeu démarre avec 999 · · · 999 (2000 neufs) bonbons, alors
le premier joueur gagne.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CC26. A function f is defined in such a way that f(1) = 2, and for each
positive integer n > 1,

f(1) + f(2) + f(3) + · · ·+ f(n) = n2f(n).

Determine the value of f(2013).

CC27. A n × n × n cube has its faces ruled into n2 unit squares. A path is
to be traced on the surface of the cube starting at (0, 0, 0) and ending at (n, n, n)
moving only in a positive sense along the ruled lines. Determine the number of
distinct paths.

CC28. The quartic polynomial P (x) satisfies P (1) = 0 and attains its maxi-
mum value of 3 at both x = 2 and x = 3. Compute P (5).

CC29. Consider three parallelograms P1, P2, P3. Parallelogram P3 is inside
parallelogram P2, and the vertices of P3 are on the edges of P2. Parallelogram P2

is inside parallelogram P1, and the vertices of P2 are on the edges of P1. The sides
of P3 are parallel to the sides of P1. Prove that one side of P3 has length at least
half the length of the parallel side of P1.

CC30. Two polite but vindictive children play a game as follows. They start
with a bowl containing N candies, the number known to both contestants. In
turn, each child takes (if possible) one or more candies, subject to the rule that
no child may take, on any one turn, more than half of what is left. The winner is
not the child who gets most candy, but the last child who gets to take some.
Thus, if there are 3 candies, the first player may only take one, as two would be
more than half. The second player may take one of the remaining candies; and
the first player cannot move and loses.
(a) Show that if the game begins with 2000 candies the first player wins.
(b) Show that if the game begins with 999 · · · 999 (2000 9’s) candies, the first
player wins.

Copyright c© Canadian Mathematical Society, 2013
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THE OLYMPIAD CORNER
No. 304

Nicolae Strungaru

Toutes solutions aux problèmes dans ce numéro doivent nous parvenir au plus tard
le 1 decembre 2013.

Chaque problème sera publié dans les deux langues officielles du Canada
(anglais et français). Dans les numéros 1, 3, 5, 7 et 9, l’anglais précédera le français,
et dans les numéros 2, 4, 6, 8 et 10, le français précédera l’anglais. Dans la section des
solutions, le problème sera publié dans la langue de la principale solution présentée.

La rédaction souhaite remercier Jean-Marc Terrier, de l’Université de Montréal,
d’avoir traduit les problèmes.

OC86. Lors d’une réunion contenant un nombre fini de participants, certains
se trouvaient être des amis. Parmi tout groupe de 4 personnes, ou bien il y en avait
3 tous amis entre eux ou alors 3 tous inconnus l’un de l’autre. Montrer qu’on peut
alors séparer tous les participants en deux groupes de sorte que le premier groupe
ne contienne que des amis entre eux et que le second groupe ne contienne que des
inconnus l’un de l’autre. (L’amitié est une relation mutuelle).

OC87. Appelons un nombre naturel n fidèle, s’il existe des nombres naturels
a < b < c tels que a | b, b | c et n = a+ b+ c.

(i) Montrer que tous les nombres naturels sont fidèles sauf un nombre fini d’entre
eux.

(ii) Trouver la somme de tous les nombres naturels qui ne sont pas fidèles.

OC88. Trouver toutes les fonctions f : R 7→ R telles que

f(f(x)− f(y)) = f(f(x))− 2x2f(y) + f(y2),

pour tous les x, y ∈ R.

OC89. Soit ABCD un quadrilatère cyclique qui ne soit pas un trapézöıde et
dont les diagonales se coupent en E. Soit F et G les points milieux de AB et CD,
et soit ` la droite par G parallèle à AB. Soit H et K les pieds des perpendiculaires
issues de E sur les droites ` et CD. Montrer que EF ⊥ HK.
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OC90. Soit n un entier positif. Si une racine de l’équation quadratique
x2 − ax+ 2n = 0 est égale à

1√
1

+
1√
2

+ · · ·+ 1√
n
,

montrer que 2
√

2n ≤ a ≤ 3
√
n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OC86. There were finitely many persons at a party among whom some were
friends. Among any 4 of them there were either 3 who were all friends among each
other or 3 who weren’t friends with each other. Prove that you can separate all the
people at the party in two groups in such a way that in the first group everyone is
friends with each other and that all the people in the second group are not friends
to anyone else in second group. (Friendship is a mutual relation).

OC87. Call a natural number n faithful if there exist natural numbers a < b < c
such that a | b, b | c and n = a+ b+ c.

(i) Show that all but a finite number of natural numbers are faithful.

(ii) Find the sum of all natural numbers which are not faithful.

OC88. Find all functions f : R 7→ R such that

f(f(x)− f(y)) = f(f(x))− 2x2f(y) + f(y2),

for all x, y ∈ R.

OC89. Let ABCD be a cyclic quadrilateral which is not a trapezoid and whose
diagonals meet at E. Let F and G be the midpoints of AB and CD, and let `
be the line through G parallel to AB. Let H,K be the feet of the perpendiculars
from E onto the lines ` and CD. Prove that EF ⊥ HK.

OC90. Let n be a positive integer. If one root of the quadratic equation
x2 − ax+ 2n = 0 is equal to

1√
1

+
1√
2

+ · · ·+ 1√
n
,

prove that 2
√

2n ≤ a ≤ 3
√
n.
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OLYMPIAD SOLUTIONS

OC26. Find all functions f from the real numbers to the real numbers which
satisfy

f
�
x3
�

+ f
�
y3
�

= (x+ y)(f
�
x2
�

+ f
�
y2
�
− f(xy))

for all real numbers x and y.
(Originally question #3 from the 2008/9 British Mathematical Olympiad, Round
2.)

Solved by Michel Bataille, Rouen, France ; Chip Curtis, Missouri Southern State
University, Joplin, MO, USA ; and Oliver Geupel, Brühl, NRW, Germany. We
give the similar solutions of Bataille and Geupel.

For each real number a, the function f(x) = ax is a solution. We prove
there are no other solutions.

Let z be a non-negative real number. Setting x = −y = 3
√
z we get that

f(−x) = −f(x), thus f is an odd function. In particular f(0) = 0. Setting y = 0
in the given equation we get

f(x3) = xf(x2) (1)

Substituting this in the functional equation we get

xf(x2) + yf(y2) = (x+ y)(f(x2) + f(y2)− f(xy))

and thus

(x+ y)f(xy) = xf(y2) + yf(x2) (2)

Setting y = 1 and then y = −1 in (2) we get

(x+ 1)f(x) = xf(1) + f(x2) (3)

(x− 1)f(−x) = xf(1)− f(x2) (4)

Adding (3) and (4) and using the fact that f is odd, we get

f(x) = xf(1)

which proves our claim.

OC27. A natural number k is said to be n-squared if, for every colouring of
the squares in a chessboard of size 2n× k with n colours, there are 4 squares with
the same colour whose centres are the vertices of a rectangle with sides parallel to
the sides of the chessboard.

For any given n, find the smallest natural number k which is n-squared.
(Originally question #6 from the XXV Olimpiadi Italiane della Matematica.)
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Solved by Oliver Geupel, Brühl, NRW, Germany.

We show that the smallest n-squared number is�
2n

2

�
+ 1 .

First we give a colouring for a 2n×
�

2n

2

�
chessboard that does not have 4

squares with the same colour whose centres are the vertices of a rectangle with
sides parallel to the sides of the chessboard.

Let P1P2 . . . P2n−1 be a regular (2n − 1)–gon and consider the indices of
vertices of the polygon modulo 2n − 1. Also let P2n be an additional point (this
one not to be modified modulo 2n−1). For each i = 1, 2, . . . , 2n−1, consider the
set Ai of unordered pairs of vertices that have a common edge or diagonal that is
parallel to PiPi+1. Moreover, let the pair {Pn+i, P2n} be a member of Ai (where
the index n+ i is taken modulo 2n− 1). Identifying pairs {Pr, Ps} of edges with
pairs {r, s} of numbers from the set {1, 2, . . . , 2n}, we obtain 2n − 1 disjoint
sets A1, A2, . . . , A2n−1 of pairs of elements from {1, 2, . . . , 2n}.

For each i, colour the elements of each pair in Ai with one of n colours
C1, C2, . . . , Cn, using the same colour for the elements of each pair and distinct
colours for elements of distinct pairs. Apply the colouring of Ai to the i-th column
of the chessboard. In this way we obtain a colouring of the leftmost 2n× (2n− 1)
block B1 of the board. It has the property that, if two cells in a column are equally
coloured, then the similar cells in other columns are not equally coloured.

Consider the other n− 1 blocks B2, B3, . . . , Bn of the board. A colouring
of Bj is obtained from the colouring of B1 by the permutation�

C1 C2 . . . Cn
Cj Cj+1 . . . Cj+n−1

�
of the colours, where indices are taken modulo n. It has the property that, if two
cells in a column are equaly coloured, then the similar cells in other columns are
either not equally coloured or equally coloured but with a different colour.

We have therefore obtained a colouring for a 2n ×
�

2n

2

�
chessboard that

does not have 4 squares with the same colour whose centres are the vertices of a
rectangle with sides parallel to the sides of the chessboard.

It remains to prove that the number

�
2n

2

�
+ 1 is n-squared.

Suppose that the squares of a 2n ×
��

2n

2

�
+ 1

�
chessboard are coloured

with n colours. In each column we can choose at most n cells of different colours.
The other at least n cells of the column can be combined with one of these cells
to make an unordered pair of cells of the same colour. Therefore, we have at
least n pairs of cells of the same colour in each column. Thus, we have at least

n ·
��

2n

2

�
+ 1

�
pairs of cells that are of the same colour and in the same column.
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Since n colours are used, there is a colour C such that we have at least�
2n

2

�
+ 1 pairs of cells whose members are in the same column and coloured with

the colour C. But there are only

�
2n

2

�
unordered pairs of rows. By the Pigeonhole

principle, two of these pairs of cells must be in the same pair of rows. Therefore
there must be 4 squares with the same colour whose centres are the vertices of a
rectangle with sides parallel to the sides of the chessboard.

Consequently,

�
2n

2

�
+ 1 is n-squared.

OC28. A flea is initially at the point (0, 0) of the Euclidean plane. It then
takes n jumps. Each jump is taken in any of the four cardinal directions (north,
east, south or west). The first jump has length 1, the second jump has length 2,
the third jump has length 4, and so on, the nth jump has length 2n−1.

Prove that if we know the number of jumps and the final position, we can
uniquely determine the path the flea took.
(Originally question #4 from XXV Olimpiadi Italiane della Matematica.)

Solved by Oliver Geupel, Brühl, NRW, Germany.

Let e1 = (1, 0), e2 = (0, 1). Consider a vector u such that

u =
n−1X
k=0

2kvk =
n−1X
k=0

2kwk, vk, wk ∈ {±e1, ±e2}.

We have to prove that

vk = wk, k = 0, 1, . . . , n− 1. (1)

The proof is by induction on n.
The claim (1) is clearly true if n = 1. We now prove the inductive step.
If vn+1 = wn+1, then

nX
k=1

2kvk =
nX
k=1

2kwk,

and the conclusion vk = wk, k = 0, 1, . . . , n follows by induction.
It remains to consider the case vn+1 6= wn+1. For (x, y) ∈ R2, let denote

|(x, y)|1 = |x|+ |y|. Then, it is easy to check that |vn+1 −wn+1|1 = 2. Thus, we
obtain

2n+2 = |2n+1(vn+1 −wn+1)|1 =

�����
nX
k=0

2k(vk −wk)

�����
1

≤
nX
k=0

|2k(vk −wk)|1

≤
nX
k=0

2k · 2 = 2n+2 − 2,
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a contradiction. Hence, the case vn+1 6= wn+1 is impossible. This completes the
induction.

OC29. Let n ≥ 3 be a given integer, and a1, a2, · · · , an be real numbers

satisfying min
1≤i<j≤n

|ai − aj | = 1. Find the minimum value of
nX
k=1

|ak|3.

(Originally question #4 from the 2009 Chinese Mathematical Olympiad.)

Solved by Michel Bataille, Rouen, France ; and Oliver Geupel, Brühl, NRW,
Germany. We give the solution of Bataille.

Throughout this problem we will denote by

S(N) :=
NX
k=1

k3 .

Let A :=
Pn
k=1|ak|3.

We show that the required minimum value is

Amin =
1

8

�
n2

2

�
·
�
n2 − 1

2

�
.

Since for n = 2k we get A = Amin for

(a1, a2, . . . , an) = (−2m− 1

2
, . . . ,−3

2
,−1

2
,

1

2
,

3

2
, . . . ,

2m− 1

2
)

and for n = 2k + 1 we get A = Amin for

(a1, a2, . . . , an) = (−m, −(m− 1), . . . , −1, 0, 1, . . . , m),

it suffices to show that A ≥ Amin for all (a1, a2, . . . , an) satisfying

min
1≤i<j≤n

|ai − aj | = 1 .

Since the condition is invariant under the permutations on aj and under
replacing all aj by −aj , without loss of generality we can assume that the number
r of negative entries is not greater that the number of positive entries and that

a1 ≤ a2 ≤ a2 ≤ · · · ≤ ar < 0 ≤ ar+1 ≤ · · · ≤ an .

If r = 0 then a1 ≥ 0 and ak ≥ a1 + (k − 1) thus

A ≥ a3
1 + (a1 + 1)3 + · · ·+ (a1 + n− 1)3 ≥ S(n− 1) .

Otherwise we have 1 ≤ r ≤ n
2 and

a1 < a2 < · · · < ar < 0 ≤ ar+1 < ar+2 < · · · < an .

Then

ar+2 ≥ ar+1 + 1, ar+3 ≥ ar+1 + 2, . . . , an ≥ ar+1 + n− r − 1 ,
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and

ar−1 ≤ ar − 1, ar−2 ≤ ar − 2, . . . , a1 ≤ ar − r + 1 .

Then we distinguish two cases:

If ar+1 ≥ 1 then

A ≥ (r − 1)3 + (r − 2)3 + ...+ 13 + 03 + 13 + ...+ (n− r)3

= S(r − 1) + S(n− r)

If ar+1 < 1 then since −ar > 1− ar−1 , we have

A ≥ (r − ar+1)3 + (r − 1− ar+1)3 + · · ·+ (1− ar+1)3 + a3
r+1 + (ar+1 + 1)3

+ · · ·+ (ar+1 + n− r − 1)3

Now

(j − ar+1)3 + (j + ar+1)3 = 2j3 + 6ja2
r+1 ≥ 2j3 ,

for all 1 ≤ j ≤ r. Thus, since r ≤ bn2 c we have

A ≥ 2
rX
j=1

j3 + a3
r+1 + (ar+1 + 1)3 + · · ·+ (ar+1 +n− r− 1)3 ≥ S(r) +S(n− r− 1)

Thus, since S(r− 1) +S(n− r)−S(r)−S(n− r− 1) = (n− r)3− r3 ≥ 0, in both
cases we have

A ≥ S(r) + S(n− r − 1) .

Now we look separately at the case n odd and n even.

Case 1: n = 2m+ 1 odd. Then r ≤ m.

If r = m then S(r) + S(n− r − 1) = 2S(m) and if r ≤ m− 1 then

S(r) + S(n− r − 1)− 2S(m) = S(2m− r)− S(m)− [S(m)− S(r)]

=
m−rX
k=1

[(m+ k)3 − (r + k)3] ≥ 0 .

Thus

A ≥ 2S(m) = Amin .

Case 2: n = 2m even. Then r ≤ m.

If r ≤ m− 1 then A ≥ S(r) + S(2m− r − 1) .

If r = m, then we have

A ≥ (m− am+1)3 + (m− 1− am+1)3 + · · ·+ (1− am+1)3 + a3
m+1

+ (am+1 + 1)3 + · · ·+ (am+1 +m− 1)3 .
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Since

(m− am+1)3 + (am+1 +m− 1)3 ≥ 1

4
(2m− 1)3

(m− 1− am+1)3 + (am+1 +m− 2)3 ≥ 1

4
(2m− 1)3

(m− 2− am+1)3 + (am+1 +m− 3)3 ≥ 1

4
(2m− 1)3

...

(1− am+1)3 + a3
m+1 ≥

1

4
(1)3

thus

A ≥ 1

4
(13 + 33 + · · ·+ (2m− 1)3) = Amin .

We complete the proof by observing that if 0 ≤ r ≤ m− 1 then

S(r) + S(2m− r − 1) ≥ 1

4
(13 + 33 + · · ·+ (2m− 1)3) . (1)

Indeed, if r = 0 the inequality (1) is obvious, while for r ≥ 1,
S(r) + S(2m− r − 1) can be rewritten as

[(2m−r−1)3+r3]+[(2m−r−2)3+(r−1)3]+...+[(2m−2r)3+13]+S(2m−2r−1)

and hence

S(r) + S(2m− r − 1)

≥ 1

4
[(2m− 1)3(2m− 3)3 + · · ·+ (2m− (2r − 1))3] + S(2m− 2r − 1)

≥ 1

4
[(2m− 1)3 + (2m− 3)3 + · · ·+ 13] .

Which completes the proof.

OC30. Let P be an interior point of a regular n-gon A1A2 · · ·An. The lines
AiP meet A1A2 · · ·An at another point Bi, where i = 1, 2, · · · , n. Prove that

nX
i=1

PAi ≥
nX
i=1

PBi .

(Originally question #8 from the 2008 China Western Mathematical Olympiad.)

No solution to this problem was received.
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BOOK REVIEWS

Amar Sodhi

A Wealth of Numbers: An Anthology of 500 Years of Popular
Mathematics Writing. Edited by Benjamin Wardhaugh
Princeton University Press, 2012
ISBN: 978-0-691-14775-8, 370 +xv pp. US$45.00
Reviewed by S. Swaminathan, Dalhousie University, Halifax, N. S.

Almost everyone to whom you are introduced as a professor of mathematics
is likely to respond “Oh! I was never good at math.” Yet many such persons,
the educated ones in particular, would love to read about mathematics, especially
popular mathematics. During the second half of the last century Martin Gard-
ner’s articles on Mathematical Games and Recreations in Scientific American have
inspired thousands of readers to delve more deeply into the large world of mathe-
matics that he loved to explore and explain. Benjamin Wardhaugh’s book reveals
that popular mathematics writing didn’t begin with Martin Gardner. In fact, it
has a rich tradition stretching back hundreds of years. The book is an entertain-
ing and enlightening anthology—the first of its kind—which presents nearly one
hundred fascinating selections from the past 500 years of popular math writing,
bringing to life a little-known side of math history. Ranging from the late fifteenth
to the late twentieth century, and drawing from books, newspapers, magazines,
and websites, the text includes recreational, classroom, and work mathematics;
mathematical histories and biographies; accounts of higher mathematics; expla-
nations of mathematical instruments; discussions of how math should be taught
and learned; reflections on the place of math in the world; and math in fiction and
humor.

There are eleven chapters, organized according to various themes which look
at how mathematics was learnt and taught, used at work and played with in spare
time, reflected on, and laughed about. Some chapters (1, 3, 5 and 7) are about
mathematics done for fun: games, popularizations and histories. Others (2, 4,
6, and 8) show it in the class room and at work. Chapters 9 and 10 are more
reflective, asking how mathematics should be taught, and why. The final chapter
treats mathematics in fiction.

Featuring many tricks, games, problems, and puzzles, as well as much his-
tory and trivia, the selections include a sixteenth-century guide to making a hor-
izontal sundial; “Newton for the Ladies” (1739); Leonhard Euler on the idea of
velocity (1760); “Mathematical Toys” (1785); a poetic version of the rule of three
(1792); “Lotteries and Mountebanks” (1801); Lewis Carroll on the game of logic
(1887); “Maps and Mazes” (1892); “Einstein’s Real Achievement” (1921); “Riddles
in Mathematics” (1945); “New Math for Parents” (1966); and “PC Astronomy”
(1997). Each selection is placed in context by a brief introduction.
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Thus this anthology is a unique window into the hidden history of popular
mathematics, The book will provide many hours of fun and learning to anyone
who loves popular mathematics and science.

The Irrationals: a Story of the Numbers You Can’t Count On by Julian Havil
Princeton University Press, Princeton & Oxford, 2012
ISBN: 978-0-691-14342-2, Cloth, 298 + ix pages, US$29.95
Reviewed by Edward Barbeau, University of Toronto, Toronto, ON

What are the real numbers? This is a deep question. It has taken about
two millenia to understand and explain their properties, and there is still much
to learn. The convoluted history of the real number system is the subject of this
interesting book by Julian Havil, his fourth exposition published by Princeton. It
is a pleasure to read, with solid mathematical content balanced by historical notes,
philosophical discussion and anecdote.

The story begins with the Greeks whose idea of number was tied to counting,
so that they had a separate concept of magnitude to deal with the continuum. This
dichotomy was forced upon them by the discovery of incommensurable geometric
magnitudes whose ratio could not be expressed with whole numbers. As Havil says,
“the first significant implication of what we now call irrationality was that math-
ematical enquiry became geometric enquiry, an approach that was to pervade all
European mathematics and last well into the eighteenth century.” (p. 35-36) But
there were other perspectives. After a generous discussion of Greek mathematics
that includes Euclid’s treatment of ratio, proportionality and incommensurability,
Havil reviews the contributions of Indian, Levantine and early Renaissance Euro-
pean mathematicians. These investigators were comfortable with a number system
that embraced surds, which they manipulated stunningly. While the spirit of these
developments is preserved, the mathematics is presented in modern notation.

The next three chapters of the book treat particular irrationals, in particular
e, π and ζ(3). Determining the character of these numbers occupied the attention
of many leading mathematicians and involved a variety of tools: continued frac-
tions, integration and infinite series. A full chapter is devoted to the proof of the
irrationality of ζ(3) by the French mathematician, Roger Apéry in 1978. This is
a real tour de force and the author presents the right amount of detail to convey
the essence of the argument without bogging the reader down in technicalities.

The author moves to more general and theoretical considerations, especially
the degree of closeness of rational approximations to real numbers. Here among
familiar material, I found some that was new and fascinating. The basic question
is when a real number α can be approximated by infinitely many rationals p/q
with |α− p/q| < 1/cqr where c and r are given reals exceeding 1. The whole story
is far from being wrapped up in the early result that α is irrational if and only
if there are infinitely many rationals with |α − p/q| < 1/q2. Havil surveys the
theoretical evolution of degree of rational approximation up to the striking result
of Klaus Roth in 1955 that, given an algebraic number α and positive ε, there are
only finitely many rationals p/q for which |α− p/q| < 1/q2+ε.

There are many other topics touched upon: straightedge-and-compasses con-
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struction, the Gelfond-Schneider theorem, uncountability of the reals (by a nested
interval rather than a diagonal argument), approximation using continued frac-
tions, the Lagrange and Markov spectra, “randomness” of decimal digits, rigorous
formulation of the real number system. The final chapter, entitled “Does Irra-
tionality Matter?” contains brief musings on the well-tempered musical scale, the
golden ratio, Penrose tiles, the characteristic function

lim
m→∞

lim
n→∞

cos2n(m!πx)

of the rationals, dynamical systems and Samuel Beatty’s notable result that, for
positive irrationals x and y whose reciprocals add to 1, the sequences {bmxc} and
{bnyc} together contain each positive integer exactly once. (It is slightly annoying
to see Beatty described as an American mathematician, despite being described
as being from the University of Toronto.)

On the whole, the author has presented a coherent and compelling account
of a sophisticated topic to which he has evidently devoted a lot of time and effort
to research and sort out. However, there were several places where I found the
treatment heavy-handed. There is an easier way of establishing the incommensu-
rability of side and diagonal of a square than is presented on page 24. On page 79,
a modulo 4 argument suffices to show that a2 +b2 = 3c2 is not solvable in integers.
The argument on page 146 that the least common multiple of the first n natural
numbers does not exceed n raised to the number of primes not greater than n
is unnecessarily complicated. More seriously, on page 86 appears the assertion
that, for a positive continuous function defined on the nonnegative reals and with
absolute maximum MN on [0, N ],Z 1

0
f(x)dx = lim

N→∞

PN
r=0 f(r)

MN (N + 1)

(try this on f(x) = sin(πx) + 2); fortunately, this is applied to a situation where
it works.

Despite some minor lapses and rough edges, this is a book worth having. It
is accessible to secondary students keen on mathematics and anyone with a first-
year university background, although it requires sustained concentration in parts.
I particularly recommend it for undergraduate students and secondary teachers.
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PROBLEM SOLVER’S TOOLKIT
No. 1

Shawn Godin

The Problem Solver’s Toolkit is a new feature in Crux Mathematicorum. It will
contain short articles on topics of interest to problem solvers at all levels. Occasionally,
these pieces will span several issues.

Fermat’s Little Theorem

A number of results from elementary number theory are useful for solving
contest-type problems. A standard theorem is
Fermat’s Little Theorem If p is a prime and a is a positive integer, then

ap ≡ a (mod p) .

If a is an integer not divisible by p, then

ap−1 ≡ 1 (mod p) .

We can see this in action for p = 7 below, where all numbers are calculated
modulo 7. Notice that both versions are illuminated by the last two columns.

a a2 a3 a4 a5 a6 a7

0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 4 1 2 4 1 2
3 2 6 4 5 1 3
4 2 1 4 2 1 4
5 4 6 2 3 1 5
6 1 6 1 6 1 6

Now let’s use this theorem in a problem. In the seventh season episode
Treehouse of Horror VI of The Simpsons (first aired October 30 1995), during the
segment Homer 3D, dim witted protagonist Homer Simpson is transported into
three dimensional space. While there, he encounters a number of mathematical
objects, like geometric solids and the coordinate axes, as well as a number of
equations that float by. One of the equations states

178212 + 184112 = 192212,

which violates Fermat’s Last Theorem (which had just been proved two years prior
to this episode airing after being unsolved for more than 350 years!). The example
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is large enough that it will probably fool your calculator. My calculator, with a
10 digit display, has 178212 + 184112 and 192212 agreeing to all displayed digits as
does 192212−184112 and 178212. Warning lights might have gone on if I calculated
192212−178212 and 184112 and noticed that they differed in the last decimal place.
Yet, my calculator gives the following results:

12
p

178212 + 184112 = 1922,
12
p

192212 − 184112 = 1782,
12
p

192212 − 178212 = 1841.

Although computer algebra software like Maple and Mathematica would make
short work of this problem, since none of 1782, 1841 and 1922 is a multiple of 13,
we can apply Fermat’s theorem to note that

178212 + 184112 ≡ 1 + 1 6≡ 1 ≡ 19222 (mod 13) .

Thus the equation is false.

Many proofs of Fermat’s Little Theorem exist; my favourite uses properties
of modular arithmetic. Consider the set {1, 2, 3, . . . , p− 1}, and let a be a positive
integer with 1 ≤ a < p; then if we reduce the set {a, 2a, 3a, . . . , (p−1)a} modulo p,
it is just a permutation of the original set. This is true since no element of the new
set is divisible by p since all factors in the products are less than p. Similarly, there
are no duplications in the set, since if am ≡ an (mod p), then m ≡ n (mod p).
Thus

(a)(2a)(3a) · · · ((p− 1)a) ≡ (1)(2)(3) · · · (p− 1) (mod p)

⇒ ap−1(1)(2)(3) · · · (p− 1) ≡ (1)(2)(3) · · · (p− 1) (mod p)

⇒ ap−1 ≡ 1 (mod p)

It is important to note that the converse of Fermat’s little theorem is false.
That is, if an−1 ≡ 1 (mod n) it doesn’t mean that n is prime. A number n that
satisfies an−1 ≡ 1 (mod n), for some positive integer a, yet is not prime, is called
a pseudoprime in base a. An example would be n = 341 = 11 × 31 which is a
pseudoprime base 2. There even exist extremal pseudoprimes, that is, numbers
n that are pseudoprime to all bases a that are relatively prime to them. That
is, n satisfies an−1 ≡ 1 (mod n) for every positive integer a, 1 < a < n, such
that gcd(a, n) = 1. These numbers are called Carmichael numbers, the smallest
of which is 561 = 3× 11× 17.

Try your hand with the following problems.

Problems:

1. Can you spot a much easier proof that 178212 + 184112 6= 192212? After
finding it, feel free to slap yourself in the head and say “D’oh!”. You can
check out other examples of mathematics in The Simpsons at [2].
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2. In the season 10 episode The Wizard of Evergreen Terrace of The Simpsons
that first aired September 20, 1998, Homer is seen writing on a chalkboard
which contains the equation 398712 + 436512 = 447212 (along with a demon-
stration of how to transform a torus into a sphere). Show that, once again,
this equation is incorrect. You can check out other examples of “Fermat near
misses” at [1].

3. Show that 341 is a pseudoprime base 2.

4. Pick several values of a, with 1 < a < 561 and gcd(561, a) = 1 and show that
561 is a pseudoprime base a. You can check out pseudoprimes, Carmichael
numbers and everything prime at [3].

5. Prove that n20 − 1 is divisible by 11 for all positive integers relatively prime
to 11.

6. Show that 129 is not prime using Fermat’s little theorem. Hint: Evaluate
2128 (mod 129).
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RECURRING CRUX
CONFIGURATIONS 7

J. Chris Fisher

Triangles whose angles satisfy B = 2C

As usual, we denote the lengths of the sides opposite angles A,B, and C
of triangle ABC by a, b, and c, respectively. The main result for this month has
appeared repeatedly on the pages of Crux since the beginning:

Theorem. Angle B is twice angle C in ∆ABC if and only if the sides satisfy
b2 = c(a+ c).

Five proofs can be found in [1976: 73-74], and further proofs in [1984: 287],
[2001: 416], [2002: 400-401], and [2006: 159]. My favorite was the fifth of the 1976
proofs, devised by the editor Léo Sauvé. Curiously the same proof appeared the
same year in [3], and reappeared in these pages in 2002. Let’s bring it back again
now. Extend AB beyond B to D so that BD = a, and consider the triangles
ABC and ACD. Because they share ∠A, they are similar exactly when b

c = a+c
b ,

which is equivalent to ∠ACD = ∠B. But ∠B is an exterior angle of ∆DCB,
whence ∠B = 2∠BCD and ∠ACD = ∠C + 1

2∠B. Putting it all together we get
b2 = c(a+ c) if and only if ∠B = ∠C + 1

2∠B, as required.

A

B C

D

a

bc

a

Figure 1: In ∆ABC, ∠B = 2∠C if and only if b2 = c(a+ c).

Integer-sided triangles with ∠B = 2∠C. A list of all integer-sided tri-
angles with ∠B = 2∠C is obtained using parameters k,m, and n, where k is an
arbitrary positive integer while m and n are relatively prime integers satisfying
2n > m > n > 1; then

a = k(m2 − n2), b = kmn, c = kn2.
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The smallest three examples are therefore

n m a b c
2 3 5 6 4
3 4 7 12 9
3 5 16 15 9

Proofs of the claim can be found in [2006: 159] and [2009: 335]. The former
is the solution to an Olympiad problem (XXI Albanian Mathematical Olympiad
2000, 12th Form, third round, Problem 5 [2004: 344] ), which demanded further
that the length of a be a prime. For that to happen we must have k = 1, m =
n + 1, and n chosen so that a = 2n + 1 is a prime number. Virtually the same
proofs are to be found in [1] (which supplies further references to this theorem
and to the generalization to triangles with ∠B = k∠C) and in [3]. The earliest
reference supplied by readers was [2], which called for the smallest integer-sided
triangle for which one angle is twice another; there is little doubt, however, that the
investigation of 4-5-6 triangles goes back long before 1960. Richard Guy assumed
that readers were familiar with the properties of integer triangles with one angle
twice another in his Problem 1220 [1987: 54; 1988: 125-126], a problem designed
to amuse puzzle enthusiasts long before Sudoku became popular. It consisted of
an 8 by 8 square partitioned into 64 blank squares; about half of these squares
were assigned numbers from 1 to 37. The 64 squares were to be filled with digits;
the twenty clues that accompanied the diagram were triples (a, b, c) of two- and
three-digit numbers that form sides of primitive integer triangles ABC with angle
B twice the size of angle A.

I found eight further Crux problems dealing with triangles having one angle
twice another.

Problem 5 of the Second Stage Exam of the 10th Iranian Mathematical Olympiad
[1995: 9; 1996: 265-267]. In triangle ABC with A ≤ 90◦ and B = 2C, let the
bisector of ∠C intersect the median AM (M is the midpoint of BC) at D; then
∠MDC ≤ 45◦, with equality if and only if A = 90◦.

Problem 2302 [1998: 45; 1999: 53-55] (proposed by Toshio Seimiya). Determine
angles B and C of ∆ABC if for the foot D of the internal bisector of ∠A we have
AB +AD = CD and AC +AD = BC.

The answer is that C = 20◦ and B = 40◦. The first featured solution
used a picture to prove directly that ∠B = 2∠C; other solvers first showed that
b2 = c(a+ c).

Problem 2501 [2000: 45; 2001: 52-53] (proposed by Toshio Seimiya). In ∆ABC
the internal bisectors of angles A and B meet the opposite sides at D and E
respectively; then AB+BD = AE+EB if and only if ∠B = 2∠C or ∠B = 120◦.

Problem 2559 [2000: 305; 2001: 466-467] (proposed by Hojoo Lee). Triangle
ABC has incentre I; AB +BI = AC if and only if ∠B = 2∠C.
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Problem 2568 [2000: 373; 2001: 416; 2002: 400-401] (proposed by K. R. S.
Sastry). If the sides of ∆ABC satisfy b2 = ac + c2 and a2 = cb + b2, find the
measures of its angles.

From our main theorem we easily deduce that the angles are C = π
7 , B = 2π

7 ,
and A = 4π

7 .

Problem 2936 [2004: 174; 2005: 189-190] (proposed by Toshio Seimiya). If
in ∆ABC we have ∠B = 2∠C and ∠A > 90◦, and D is the point where the
perpendicular to AC through C meets AB, then

1

AB
− 1

BD
=

2

BC
.

Problem 2942 [2004: 229, 232; 2005: 246-247] (proposed by Toshio Seimiya).
If in ∆ABC we have ∠B = 2∠C and D is the point on the ray CB such that
∠ADC = 1

2∠BAC, then
1

AC
+

1

CD
=

1

AB
.

Problem 3377 [2008: 430, 432; 2009: 468-469] (proposed by Toshio Seimiya).
Let ABC be a triangle with ∠B = 2∠C, and let D be the foot of the interior
bisector of ∠A while M and N are the midpoints of AC and BD, respectively. If
A,M,D, and N are concyclic, then ∠A = 72◦.
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PROBLEMS
Toutes solutions aux problèmes dans ce numéro doivent nous parvenir au plus tard

le 1 decembre 2013. Une étoile (?) après le numéro indique que le problème a été
soumis sans solution.

Chaque problème sera publié dans les deux langues officielles du Canada
(anglais et français). Dans les numéros 1, 3, 5, 7, et 9, l’anglais précédera le français,
et dans les numéros 2, 4, 6, 8, et 10, le français précédera l’anglais. Dans la section des
solutions, le problème sera publié dans la langue de la principale solution présentée.

La rédaction souhaite remercier Rolland Gaudet, de Université de Saint-Boniface,
Winnipeg, MB, d’avoir traduit les problèmes.

3731. Proposé par Richard K. Guy, Université de Calgary, Calgary, AB.

Les longueurs des côtés d’un quadrilatre sont AB = 5, BC = 10, CD = 11
et DA = 14.

(a) Si le quadrilatère est cyclique, quel est le diamètre de son cercle circonscrit ?

(b) Si on modifie l’ordre des sommets, ceci affecte-t-il la réponse en (a) ?

3752. Proposé par Péter Ivády, Budapest, Hongrie.

Démontrer que si n ≥ 2 est un entier positif alors l’inégalité suivante tient

1

2

�
1 +

1

n

�
1− 1

n

��2

<

�
1− 1

23

��
1− 1

33

�
· · ·
�

1− 1

n3

�
.

3753. Proposé par Abdilkadir Altintaş, mathematics teacher, Emirdağ, Turkey.

Des demi cercles avec centres O1 et O2 sont tracés à partir des cordes AB
et CD d’un certain cercle Γ, ces demi cercles étant tangents au point T . La ligne
passant par O1 et O2 intersecte Γ aux points E et F . Si O1A = a, O2C = b,
O1E = x et O2F = y, démontrer que a− b = x− y.

A

B

C

D

E

F

O1

O2
T

x

y
a b

3754. Proposé par Šefket Arslanagi ć, Université de Sarajevo, Sarajevo, Bosnie
et Herzégovine.
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Soit un triangle scalène ∆ABC. Dénotons par wa, wb et wc les longueurs
des bissectrices d’angles de ∆ABC, par R le rayon de son cercle circonscrit et par
r le rayon de son cercle inscrit. Démontrer l’inégalité suivante

576
√

3r3 <
w2
a − w2

b

b− a
+
w2
b − w2

c

c− b
+
w2
c − w2

a

a− c
< 72

√
3R3

3755. Proposé par Bill Sands, Université de Calgary, Calgary, AB.

Déterminer tous les nombres réels a ≤ b ≤ c ≤ d en progression arithmétique
et satisfaisant aux deux équations a+ b+ c+ d = 1 et a2 + b2 + c2 + d2 = d.

3756. Proposé par Michel Bataille, Rouen, France.

Soit le triangle ABC inscrit dans un cercle Γ et soit M le mipoint de son
arc BC qui ne contient pas A. Les perpendiculaires à AB passant par M et à MB
passant par B intersectent au point K ; aussi, les perpendiculaires à AC passant
par M et à MC passant par C intersectent au point L. Démontrer que les lignes
BC et AM intersectent au mipoint de KL.

3757. Proposé par Dragoljub Milošević, Gornji Milanovac, Serbie.

Dénotons par A, B et C les angles d’un triangle, mesurés en radians, par s
son demi périmètre, par R le rayon de son cercle circonscrit et par r le rayon de
son cercle inscrit. Démontrer les inégalités suivantes.

(a)
1

A
+

1

B
+

1

C
≤ 9

2π
· R
r

;

(b)

�
A

B
+
B

C
+
C

A

�3

≤ 9

2π
· R
r

.

3758. Proposé par Paul Yiu, Florida Atlantic University, Boca Raton, FL, É-U.

À partir d’un point X sur un segment BC, construire un point A tel que le
cercle inscrit du triangle ABC touche BC au point X et tel que la ligne reliant le
point Gergonne et les points Nagel du triangle est parallèle à BC.

3759. Proposé par Nguyen Minh Ha, Hanoi, Vietnam.

Pour un polygone convexe A1A2 · · ·An et un point intérieur P , soit

ai =
nX
j=1

AiAj . Démontrer que
nX
i=1

PAi < max
1≤j≤n

{aj}.
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3760. Proposé par Alina Ŝıntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

Soit p ≥ 2 un entier. Déterminer la limite

lim
n→∞

∞X
k=1

p
√
nPp

j=1
p

È
kj(n+ k)p−j+1

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3751. Proposed by Richard K. Guy, University of Calgary, Calgary, AB.

The edge lengths of a quadrilateral are AB = 5, BC = 10, CD = 11,
DA = 14.

(a) If the quadrilateral is cyclic, what is the diameter of its circumcircle?

(b) If we alter the order of the edges, does it affect the answer to (a)?

3752. Proposed by Péter Ivády, Budapest, Hungary.

Show that if n ≥ 2 is a positive integer then

1

2

�
1 +

1

n

�
1− 1

n

��2

<

�
1− 1

23

��
1− 1

33

�
· · ·
�

1− 1

n3

�
holds.

3753. Proposed by Abdilkadir Altintaş, mathematics teacher, Emirdağ, Turkey.

Semi-circles with centres O1 and O2 are drawn on chords AB and CD of a
circle Γ such that they are tangent at T . The line through O1 and O2 intersects Γ
at E and F . If O1A = a, O2C = b, O1E = x and O2F = y, show that a−b = x−y.

A

B

C

D

E

F

O1

O2
T

x

y
a b

3754. Proposed by Šefket Arslanagi ć, University of Sarajevo, Sarajevo, Bosnia
and Herzegovina.

Prove that in all scalene triangles ∆ABC the inequality

576
√

3r3 <
w2
a − w2

b

b− a
+
w2
b − w2

c

c− b
+
w2
c − w2

a

a− c
< 72

√
3R3

holds, where wa, wb and wc are the lengths of the angle bisectors; R is the radius
of the circumcircle; and r is the inradius of ∆ABC.
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3755. Proposed by Bill Sands, University of Calgary, Calgary, AB.

Find all real numbers a ≤ b ≤ c ≤ d which form an arithmetic progression
which satisfy the two equations a+ b+ c+ d = 1 and a2 + b2 + c2 + d2 = d.

3756. Proposed by Michel Bataille, Rouen, France.

Let triangle ABC be inscribed in circle Γ and let M be the midpoint of the
arc BC of Γ not containing A. The perpendiculars to AB through M and to MB
through B intersect at K and the perpendiculars to AC through M and to MC
through C intersect at L. Prove that the lines BC, AM intersect at the midpoint
of KL.

3757?. Proposed by Dragoljub Milošević, Gornji Milanovac, Serbia.

Let A, B, C be the angles (measured in radians), s the semi-perimeter, R
the circumradius and r the inradius of a triangle. Prove that

(a)
1

A
+

1

B
+

1

C
≤ 9

2π
· R
r

;

(b)

�
A

B
+
B

C
+
C

A

�3

≤ 9

2π
· R
r

.

3758. Proposed by Paul Yiu, Florida Atlantic University, Boca Raton, FL,
USA.

Given a point X on the segment BC, construct a point A such that the
incircle of triangle ABC touches BC at X, and that the line joining the Gergonne
point and the Nagel poits of the triangle is parallel to BC.

3759. Proposed by Nguyen Minh Ha, Hanoi, Vietnam.

Given a convex polygon A1A2 · · ·An with an interior point P . Let

ai =
nX
j=1

AiAj . Prove that
nX
i=1

PAi < max
1≤j≤n

{aj}.

3760. Proposed by Alina Ŝıntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

Let p ≥ 2 be an integer. Determine the limit

lim
n→∞

∞X
k=1

p
√
nPp

j=1
p

È
kj(n+ k)p−j+1

.
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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased to
consider for publication new solutions or new insights on past problems.

3651. [2011 : 318, 320] Correction. Proposed by Hung Pham Kim, student,
Stanford University, Palo Alto, CA, USA.

Let a, b, and c be nonnegative real numbers such that a+ b+ c = 3. Prove
that

a2b+ b2c+ c2a+ abc+ 4abc(3− ab− bc− ca) ≤ 5 .

Comment by Stan Wagon, Macalester College, St. Paul, MN, USA.

Using Mathematica, the correct maximum for the function is not 4, but the
negative of the first root of

87 979 149+709 313 125x+502 089 984x2+138 280 800x3+17 105 664x4+800 000x5

which is about 4.936. The actual values of a, b, c that realize this are combinations
of roots of degree 15 polynomials.

It was also observed by ŠEFKET ARSLANAGIĆ, University of Sarajevo, Sarajevo,
Bosnia and Herzegovina; PAOLO PERFETTI, Dipartimento di Matematica, Università degli
studi di Tor Vergata Roma, Rome, Italy; and HAOHAO WANG and JERZY WOJDYLO,
Southeast Missouri State University, Cape Girardeau, Missouri, USA that the problem, as orig-
inally stated, was incorrect. Arslanagić found a counterexample showing the original problem was
incorrect and asks for which k > 0 does the inequality a2b+b2c+c2a+abc+kabc(3−ab−bc−ca) ≤
4 hold?

3652. [2011 : 318, 321] Proposed by Ovidiu Furdui, Campia Turzii, Cluj,
Romania.

Let α and β be positive real numbers. Find the value of

lim
n→∞

nY
k=1

�
1 +

kα

nβ

�
.

Solution by the proposer, modified by the editor.

Let α+ 1 > β. Since

nY
k=1

�
1 +

kα

nβ

�
> 1 +

nX
k=1

kα

nβ
> 1 +

1

nβ

Z n

0
xαdx

= 1 +
nα+1−β

α+ 1
,
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it follows that

lim
n→∞

nY
k=1

�
1 +

kα

nβ

�
= +∞.

Now suppose that α+ 1 ≤ β and let

xn = log
nY
k=1

�
1 +

kα

nβ

�
.

Then

xn =
nX
k=1

log

�
1 +

kα

nβ

�
=

nX
k=1

�
log(1 + kα/nβ)

kα/nβ

� �
kα

nβ

�
.

Define an to be the maximum and bn to be the minimum for 1 ≤ k ≤ n of
(kα/nβ)−1 log(1 + kα/nβ). Observe that t−1 log(1 + t) is monotone and tends to
1 as t decreases to 0, and that limn→∞ nα/nβ = 0. Therefore limn→∞ an =
limn→∞ bn = 1. It follows from

an

nX
k=1

kα

nβ
≤ xn ≤ bn

nX
k=1

kα

nβ

that

lim
n→∞

xn = lim
n→∞

nX
k=1

kα

nβ
.

When β = α+ 1,

lim
n→∞

nX
k=1

kα

nβ
= lim
n→∞

1

n

nX
k=1

�
k

n

�α
=

Z 1

0
xαdx =

1

α+ 1
.

When β > α+ 1, then

nX
k=1

kα

nβ
<

1

nβ

Z n+1

0
xαdx =

(n+ 1)α+1

nβ(α+ 1)

≤ (2n)α+1

nβ(α+ 1)
=

2α+1

(α+ 1)nβ−α−1
.

It follows that limn→∞ xn = 0.
Therefore

lim
n→∞

nY
k=1

�
1 +

kα

nβ

�
=

8<:
+∞, if α+ 1 > β,

e1/(α+1), if α+ 1 = β,
0, if α+ 1 < β.
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The correct answer was obtained by ANASTASIOS KOTRONIS, Athens, Greece;
PAOLO PERFETTI, Dipartimento di Matematica, Università degli studi di Tor Vergata Roma,
Rome, Italy; HAOHAO WANG and JERZY WOJDYLO, Southeast Missouri State University,
Cape Girardeau, MO, USA; and the proposer. Unfortunately, the first three solutions were
flawed. There was one incorrect solution.

3653. [2011 : 318, 321] Proposed by Peter Y. Woo, Biola University, La Mirada,
CA, USA.

Let O be the centre of a sphere S circumscribing a tetrahedron ABCD.
Prove that:

(i) there exists tetrahedra whose four faces are obtuse triangles; and

(ii) ? if O is inside or on ABCD, then at least two faces of ABCD are acute
triangles.

Solution to (i) by the proposer.

Consider the isosceles trapezoid ABCD with AD||BC and obtuse angles
∠BAC and ∠BDC. Note that all four triangles BCD,CDA,DAB,ABC are
obtuse. Now lift B and D a short distance above the plane so that the lines AC
and BD are skew; then ABCD becomes a tetrahedron with no face that is an
acute triangle.

(ii) Remains open.
We received no satisfactory solution to part (ii), so we have moved this

problem to our unsolved problems file. In fact, there seems to be something wrong
with its statement: If A and B are the north and south poles of a sphere, and
points C and D are chosen near A on the sphere so that ∠DAC is obtuse, then
the faces ABC and ABD are right triangles (with right angles at C and D), and
ACD is obtuse. Yet the circumcentre lies on the edge AB of the tetrahedron,
contrary to the second claim. Perhaps one needs to have the circumcentre strictly
inside the tetrahedron to insure that at least two of its faces be acute.

3654. [2011 : 319, 321] Proposed by Pham Van Thuan, Hanoi University of
Science, Hanoi, Vietnam.

Let a, b, c, and d be nonnegative real numbers such that a2 + b2 + c2 +d2 = 1.
Prove that

a3 + b3 + c3 + d3 + abc+ bcd+ cda+ dab ≤ 1 .

Solution by Albert Stadler, Herrliberg, Switzerland.

Let f(a, b, c, d) = a3 + b3 + c3 + d3 + abc+ bcd+ cda+ dab. By the Cauchy-
Schwarz Inequality,

a2 + bc ≤
p
a2 + b2

p
a2 + c2. (1)

So, by equation (1), followed by a second application of the Cauchy-Schwarz in-

equality, and by twice using the given condition
X

cyclic

a2 = a2 + b2 + c2 + d2 = 1,
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the desired result is obtained as follows:

f(a, b, c, d) =
X

cyclic

a(a2 + bc) ≤
X

cyclic

a
p
a2 + b2

p
a2 + c2

≤
ÊX

cyclic

a2

ÊX
cyclic

(a2 + b2)(a2 + c2)

= 1 ·
ÊX

cyclic

(a4 + a2b2 + b2c2 + c2a2) = a2 + b2 + c2 + d2 = 1

Additionally, for a, b, c, and d nonnegative and a2 + b2 + c2 + d2 = 1, observe that
the function f(a, b, c, d) attains its maximum value of 1, for example, at the point
(a, b, c, d) = (1, 0, 0, 0).

Also solved by AN-ANDUUD Problem Solving Group, Ulaanbaatar, Mongolia; ŠEFKET
ARSLANAGIĆ, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; SALEM
MALIKIĆ, student, Simon Fraser University, Burnaby, BC; STAN WAGON, Macalester Col-
lege, St. Paul, MN, USA; HAOHAO WANG and JERZY WOJDYLO, Southeast Missouri State
University, Cape Girardeau, Missouri, USA; and the proposer.

Wang and Wojdylo used the Lagrange Multiplier Method and Gröbner bases to prove the
result and showed that (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and

�
1
2
, 1
2
, 1
2
, 1
2

�
were the only

places where a maximum was attained. Wagon pointed out that the problem can be completely
solved using standard algorithms in Mathematica

3655. [2011 : 319, 321] Proposed by Ovidiu Furdui, Campia Turzii, Cluj,
Romania.

Calculate the integral Z 1

0

Z 1

0
x

§
1

1− xy

ª
dxdy,

where {a} = a− bac denotes the fractional part of a.

I. Solution by Roger Zarnowski, Angelo State University, San Angelo, TX, USA.

The value is 1− π2/12. To see this, let

(u, v) =

�
1

1− xy
,
y

x

�
.

For 0 < x, y < 1, we have that u > 1 and v > 0. The inverse transformation is
given by

(x, y) =

�r
u− 1

uv
,

r
(u− 1)v

u

�
.

The Jacobian of the transformation is��������
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

�������� =

���������
1

2u2v

q
uv

u− 1
−u− 1

2uv2

q
uv

u− 1

v

2u2

É
u

(u− 1)v

u− 1

2u

É
u

(u− 1)v

���������
=

1

2u2v
.
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The unit square S = {(x, y) : 0 < x, y < 1} is covered by hyperbolic arcs of
equation xy = α where 0 < α < 1. These arcs are mapped into vertical segments
of equation u(1− α) = 1. The square S is mapped onto the region

R =

§
(u, v) :

u− 1

u
< v <

u

u− 1
, 1 < u <∞

ª
.

ThenZ 1

0

Z 1

0
x

§
1

1− xy

ª
dxdy =

Z ∞
1

Z u
u−1

u−1
u

r
u− 1

uv
{u} 1

2u2v
dvdu

=
∞X
n=1

Z n+1

n

Z u
u−1

u−1
u

r
u− 1

u
{u} 1

2u2
v−3/2dvdu.

For n ≤ u < n+ 1, we have {u} = u− n, so that upon integrating with respect to
v, we obtain

−
∞X
n=1

Z n+1

n

r
u− 1

u
(u− n)

1

u2

�
v−1/2

� u
u−1

u−1
u

du

= −
∞X
n=1

Z n+1

n

r
u− 1

u
(u− n)

1

u2

�r
u− 1

u
−
É

u

u− 1

�
du

= −
∞X
n=1

Z n+1

n
(u− n)

1

u2

�
u− 1

u
− 1

�
du

=
∞X
n=1

Z n+1

n
(u−2 − nu−3)du =

∞X
n=1

1

2n(n+ 1)2

=
1

2

∞X
n=1

�
1

n
− 1

n+ 1
− 1

(n+ 1)2

�

=
1

2

" ∞X
n=1

�
1

n
− 1

n+ 1

�
−

 ∞X
n=1

1

n2
− 1

!#

=
1

2

�
1−

�
π2

6
− 1

��
= 1− π2

12
.

II. Solution by Missouri State University Problem Solving Group, Springfield, MO,
USA, expanded by the editor.

Note that, if n−1
n ≤ xy < n

n+1 , then b 1
1−xy c = n. Thus the desired integral

is equal to

∞X
n=1

 Z 1

n−1
n

Z 1

n−1
nx

x

�
1

1− xy
− n

�
dydx−

Z 1

n
n+1

Z 1

n
(n+1)x

x

�
1

1− xy
− n

�
dydx

!
,
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or Z 1

0

Z 1

0

�
x

1− xy

�
dydx− n

 Z 1

n
n+1

Z 1

n
(n+1)x

xdydx−
Z 1

n−1
n

Z 1

n−1
nx

xdydx

!
.

We have thatZ 1

0

Z 1

0

�
x

1− xy

�
dydx = lim

t→0+

Z 1−t

0

Z 1

0

�
x

1− xy

�
dydx

= lim
t→0+

Z 1−t

0
[− ln(1− xy)]

1
0 dx

= lim
t→0+

Z 1−t

0
[− ln(1− x)]dx = lim

t→0+
[(1− x) ln(1− x) + x]

1−t
0

= lim
t→0+

[t ln t+ (1− t)] = 1,

and, for each q ∈ [0, 1],Z 1

q

Z 1

q/x
xdydx =

Z 1

q
(x− q)dx =

1

2
(1− q)2.

Therefore the desired integral is equal to

1− 1

2

∞X
n=1

n

�
1

n2
− 1

(n+ 1)2

�
= 1− 1

2

∞X
n=1

�
1

n
− 1

n+ 1
+

1

(n+ 1)2

�

= 1− 1

2

"
1 +

∞X
n=1

1

(n+ 1)2

#
= 1− π2

12

Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
PAUL DEIERMANN, Southeast Missouri State University, Cape Girardeau, MO, USA;
ALBERT STADLER, Herrliberg, Switzerland; and the proposer. Deiermann partitioned the
domain of integration into regions between hyperbolic arcs, while Curtis followed the strategy of
the first solution using the transformation (x, t) = (x, (1 − xy)−1). There were two incorrect
solutions, each of which yielded the putative answer 1− γ, where γ is Euler’s constant.

3656. [2011 : 319, 321] Proposed by Michel Bataille, Rouen, France.

Let AB be a fixed chord of an ellipse that is not a diameter and let MN
be a variable diameter. Show that the locus of the intersection of MA and NB
is an ellipse with the same eccentricity as that of the original ellipse, and find a
geometrical description of its centre.

Solution by the proposer.

As usual, the line MA is the tangent to the given ellipse E at A if M = A
and, similarly, NB is the tangent at B if N = B. We denote by S the reflection in
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the centre O. Without loss of generality, we suppose that coordinates have been

chosen so that E has equation x2

a2 + y2

b2 = 1 with a > b > 0. Let E1 denote the
circle with centre O and radius a, and A be the strain (perspective affinity) that
takes the point K1(x, y) to K(x, by

a ) (so that A(E1) = E). Let A1, B1,M1, N1 be
the points of E1 with respective images A,B,M,N under A. From the properties
of perspective affinities, N1 = S(M1); moreover, if A1M1 and B1N1 intersect at
P1, then AM and BN intersect at P = A(P1), as in the accompanying figure.

O

A

B

A1

B1

M

N

P

M1

N1

P1

E

E1

We will soon prove that the locus of P1 is a circle Γ1 orthogonal to E1
through A1 and B1. It will then follow that the desired locus Γ is just A(Γ1). For
its eccentricity, let U1(α, β) and r be the centre and radius of Γ1, so that Γ1 has
equation (x−α)2+(y−β)2 = r2. Then the equation of Γ is (x−α)2+(ayb −β)2 = r2,
or

(x− α)2

r2
+

(y − βb
a )2

b2r2

a2

= 1.

Thus, Γ is an ellipse centred at U(α, βb
a ) = A(U1); its eccentricity isÊ

1−
b2r2

a2

r2
=

r
1− b2

a2
,

which equals the eccentricity of E , as desired. Since U = A(U1) the construction
of U is routine once U1 has been obtained. Since Γ1 is orthogonal to E1 at A1 and
B1, U1 must be the point of intersection of the perpendicular bisector of A1B1 and
the tangent to E1 at A1. [Editor’s comment: Alternatively, U can be constructed
directly as the point of intersection of the tangents to E at A and B.]

It remains to prove the claim that the locus of P1 = A1M1∩B1N1 is a circle
through A1 and B1 that is orthogonal to the circle E1. Let M1 be any point on E1.
If M1 = B1 then P1 = B1; if M1 = S(A1), then P1 = A1. Otherwise, P1 is not on
A1B1, so the inversion with centre at P1 that interchanges M1 with A1 takes N1

to B1 and fixes E1. Since M1N1 is a diameter of E1, the circle P1A1B1, which is
the image under the inversion of the line M1N1, is therefore orthogonal to E1, and
we have P1 ∈ Γ1. Conversely, let X be an arbitrary point on Γ1; we must show

Copyright c© Canadian Mathematical Society, 2013



252/ SOLUTIONS

that there exists a point M1 ∈ E1 with N1 = S(M1) such that X = A1M1 ∩B1N1.
If X = B1, then X is obtained from M1 = B1; if X = A1, then X is obtained
from M1 = S(A1). Otherwise, we take M1 as the second point of intersection of
XA1 and E1. With N1 = S(M1), the image of N1 under the inversion with centre
X that interchanges M1 and A1 is on E1 and XN1, hence is B1. Consequently,
every point X ∈ Γ1 is a point of the locus.

We received no other solutions. Readers with some knowledge of projective geometry will
note that because the points M and N are projectively related, the line AM in the line pencil A
is projectively related to the line BM in the line pencil B, whence the locus AM ∩BN is a conic
through A and B by Steiner’s construction. (See, for example, H. S. M. Coxeter, Projective
Geometry, Theorem 8.51.) One easily sees that the locus is bounded, so that the conic must be
an ellipse, but coordinates are needed to prove that the new ellipse has the same eccentricity as
the original.

3657. [2011 : 319, 321] Proposed by Thanos Magkos, 3rd High School of
Kozani, Kozani, Greece.

Prove that for the angles of any triangle the following inequality holds

cos2A

1 + cos2A
+

cos2B

1 + cos2B
+

cos2 C

1 + cos2 C
≥ 1

2
.

I. Solution by Salem Malikić, student, Simon Fraser University, Burnaby, BC.

Let a = cos2A, b = cos2B, and c = cos2 C, then the inequality becomes

a

1 + a
+

b

1 + b
+

c

1 + c
≥ 1

2

which is equivalent to

a+ b+ c+ 2(ab+ bc+ ca) + 3abc

(1 + a)(1 + b)(1 + c)
≥ 1

2

or
a+ b+ c+ 3(ab+ bc+ ca) + 5abc− 1

(1 + a)(1 + b)(1 + c)
≥ 0 .

Thus, it suffices to prove that

a+ b+ c+ 3(ab+ bc+ ca) + 5abc ≥ 1. (1)

Without loss of generality, assume that A = min{A,B,C}. Then A ≤ π
3

implying cosA ≥ 1
2 so

√
a ≥ 1

2 . Hence,

3(ab+ ca) ≥ 3 · 2
√
a2bc = 6

√
a
√
abc ≥ 3

√
abc ≥ 2

√
abc . (2)

It is well known that

cos2A+ cos2B + cos2 C + 2 cosA cosB cosC = 1

that is,
a+ b+ c+ 2

√
abc = 1. (3)
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Using (2) and (3) we obtain

a+ b+ c+ 3(ab+ bc+ ca) + 5abc ≥ a+ b+ c+ 3(ab+ ca)

≥ a+ b+ c+ 2
√
abc = 1

establishing (1) and completing the proof.

II. Solution by Titu Zvonaru, Cománeşti, Romania.

Consider first the case when the triangle is right angled; say, C = π
2 . Since

cosB = cos
�
π
2 −A

�
= sinA the given inequality is equivalent, in succession, to

cos2A

1 + cos2A
+

sin2A

1 + sin2A
≥ 1

2

2 cos2A+ 4 sin2A cos2A+ 2 sin2A ≥ 1 + cos2A+ sin2A+ sin2A cos2A

3 sin2A cos2A ≥ 0

which is clearly true.
Now suppose A,B,C 6= π

2 . Applying the identity 1
cos2 θ = 1 + tan2 θ with

θ = A,B, and C, the given inequality becomes

1

2 + tan2A
+

1

2 + tan2B
+

1

2 + tan2 C
≥ 1

2

or by setting x = tanA, y = tanB, and z = tanC,

1

2 + x2
+

1

2 + y2
+

1

2 + z2
≥ 1

2
. (4)

Clearing the denominators and using the well known fact that x + y + z = xyz,
(4) is equivalent, in succession, toX

cyclic

(8 + 4x2 + 4y2 + 2x2y2) ≥ 8 +
X

cyclic

(4x2 + 2x2y2) + x2y2z2

16 + 4x2 + 4y2 + 4z2 ≥ x2y2z2

16 + 4(x2 + y2 + z2) ≥ (x+ y + z)2

16 + 3(x2 + y2 + z2)− 2(xy + yz + zx) ≥ 0

and finally,

16 + x2 + y2 + z2 + (x− y)2 + (y − z)2 + (z − x)2 ≥ 0

which is clearly true.
Note that the given inequality is always strict unless we include degenerated

triangles in which case equality would hold if and only if two of A, B, and C equal
π
2 and the other one equals 0.

Also solved by AN-ANDUUD Problem Solving Group, Ulaanbaatar, Mongolia; ŠEFKET
ARSLANAGIĆ, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; MARIAN DINCĂ,
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Bucharest, Romania; OLEH FAYNSHTEYN, Leipzig, Germany; EDMUND SWYLAN, Riga,
Latvia; and HAOHAO WANG and JERZY WOJDYLO, Southeast Missouri State University,
Cape Girardeau, Missouri, USA.

3658. [2011 : 319, 322] Proposed by Ovidiu Furdui, Campia Turzii, Cluj,
Romania.

Let −π < θ0 < θ1 < · · · < θk < π and let aj , j = 0, 1, · · · , k, be complex
numbers. Prove that if

lim
n→∞

kX
j=0

aj cos(θjn) = 0 ,

then aj = 0 for all j.

Solution by Paolo Perfetti, Dipartimento di Matematica, Università degli studi di
Tor Vergata Roma, Rome, Italy.

The conclusion is false as shown by the counterexample below:

Let k = 1, θ0 = −π4 , θ1 = π
4 . Then

lim
n→∞

kX
j=0

aj cos(θjn) = lim
n→∞

(a0 + a1) cos
�nπ

4

�
= (a0 + a1) lim

n→∞
cos
�nπ

4

�
= 0

which implies that a0 + a1 = 0, not necessarily a0 = a1 = 0.

No other solutions were received. The proposer actually realized his error after the prob-
lem had already appeared.

3659. [2011 : 319, 322] Proposed by Michel Bataille, Rouen, France.

Let P be a point on a circle Γ with diameter AB. The tangent to Γ at P
intersects the tangents at A and B in D and C, respectively. Let M be any point
of the line BC and V the point of intersection of MD and BP . If the parallel to
BC through V meets CD in U , show that the line MU is tangent to Γ.

Solution by Edmund Swylan, Riga, Latvia.

When M = B or M = C the result is trivially true (with MU touching Γ
at B and at P , respectively). So, let us assume that M 6= B,C and let the second
tangent to Γ from M touch it at Q. When MQ is not parallel to CD, define
U ′ := MQ ∩ CD and let V ′ be the point where the parallel to BC through U ′

meets BP . We must prove that V = V ′ (since that implies U ′ = U ∈MQ); since
V ′ is on BP by definition, this amounts to proving that V ′ ∈MD.
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A

B C

D D′

O

M M ′

N

P

Q

U ′

V ′

Γ

Denote the centre of Γ by O, and let D′ := AD ∩BP and N := AD ∩MQ.
Because AB is a diameter we have BP ⊥ AP ; because OD bisects the angle
between the tangents from D to A and P , AP is also perpendicular to OD. Thus,
OD ‖ BP and, because O is the midpoint of AB, it follows that D is the midpoint
of AD′. Similarly, define M ′ := BC ∩ AQ and, because OM ‖ AQ we have M is
the midpoint of BM ′.

We have U ′Q = U ′P because they are tangents to Γ from U ′. Moreover,
the triangles U ′PV ′ and CPB are homothetic, and because the tangents CB and
CP are equal in length, we deduce that U ′V ′ = U ′P and, therefore, U ′Q = U ′V ′.
This implies that ∆QU ′V ′ ∼ ∆QNA by SAS (∠QU ′V ′ = ∠QNA because Q lies

on the transversal of the parallel sides U ′V ′ and NA, while U ′V ′

U ′Q = NA
NQ = 1).

Consequently, V ′ ∈ AQ, whence there is a dilatation centred at V ′ that takes
∆V ′AD′ and its median V ′D to ∆V ′M ′B and its median V ′M . We conclude
that V ′ ∈MD, as desired.

Our argument falls apart when MQ ‖ CD, in which case U ′ is not defined.
Still, the result continues to hold for this position of M since CDNM forms a
rhombus that is circumscribed about Γ, in which case the figure is symmetric
about O and we have MQ ‖ CD if and only if MD ‖ BP ; we then interpret U ′ to
be the common point of infinity of MQ and CD if and only if V ′ is the common
point of infinity of MD and BP , which is precisely what was to be proved.

Also solved by TITU ZVONARU, Cománeşti, Romania; and the proposer.

None of our correspondents mentioned that the result is actually a theorem of projective
geometry: The circle Γ can be replaced by any conic. Moreover, A,B, P , and Q can be any four
points on the conic — the centre O is irrelevant. The result reduces to Pascal’s theorem applied
to the quadrangle ABPQ with two of its vertices repeated: If A,B, P , and Q are four points of
a conic then the tangents at A and B, the tangents at P and Q, the sides AP and BQ, and the
sides BP and AQ meet in collinear points. For the special case of our problem, we infer that
the line joining U (where the tangents at P and Q meet) to V (= AQ ∩ BP ) is parallel to the
tangents at A and B and it passes through W := AP ∩ BQ. The same theorem applied to the
tangents at B and Q (which meet at M) and at A and P (which meet at D) says that V lies
also on MD. As a bonus line MD also contains the point AB ∩ PQ, and the line joining that
point to C also contains W and N .
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3660. [2011 : 319, 322] Proposed by Dragoljub Milošević, Gornji Milanovac,
Serbia.

Triangle ABC has inradius r, circumradius R, and side lengths a, b, c. Prove
that

y + z

x
· 1

a2
+
z + x

y
· 1

b2
+
x+ y

z
· 1

c2
≥ 1

Rr
,

for all positive real numbers x, y and z.

Solution by Kee-Wai Lau, Hong Kong, China.

Let s be the semiperimeter of the triangle ABC. Using the well known facts
that abc = 4sRr and p+ q ≥ 2

√
pq for any nonnegative real numbers p and q, we

have

y + z

x
· 1

a2
+
z + x

y
· 1

b2
+
x+ y

z
· 1

c2

=

�
y

x
· 1

a2
+
x

y
· 1

b2

�
+

�
z

y
· 1

b2
+
y

z
· 1

c2

�
+

�
x

z
· 1

c2
+
z

x
· 1

a2

�
≥ 2

ab
+

2

bc
+

2

ca
=

2(a+ b+ c)

abc
=

1

Rr
.

Also solved by ARKADY ALT, San Jose, CA, USA; AN-ANDUUD Problem Solv-
ing Group, Ulaanbaatar, Mongolia; ŠEFKET ARSLANAGIĆ, University of Sarajevo, Sara-
jevo, Bosnia and Herzegovina; CHIP CURTIS, Missouri Southern State University, Joplin,
MO, USA; PRITHWIJIT DE, Homi Bhabha Centre for Science Education, Mumbai, India;
MARIAN DINCĂ, Bucharest, Romania; JOHN G. HEUVER, Grande Prairie, AB;
DIMITRIOS KOUKAKIS, Kato Apostoloi, Greece; SALEM MALIKIĆ, student, Simon Fraser
University, Burnaby, BC; PAOLO PERFETTI, Dipartimento di Matematica, Università degli
studi di Tor Vergata Roma, Rome, Italy; TITU ZVONARU, Cománeşti, Romania; and the
proposer.
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