
(solutions follow)

1998-1999 Olympiad Correspondence Problems

Set 1

1. ABC is an isosceles triangle with 6 A = 100◦ and AB = AC. The bisector of angle B meets AC in D.
Show that BD + AD = BC.

2. Let I be the incentre of triangle ABC. Let the lines AI, BI and CI produced intersect the circumcircle
of triangle ABC at D, E and F respectively. Prove that EF is perpendicular to AD.

3. Let PQR be an arbitrary triangle. Points A, B and C external to the triangle are determine for which

6 AQR = 6 ARQ = 15◦

6 QPC = 6 RPB = 30◦

6 PQC = 6 PRB = 45◦ .

Prove that
(a) AC = AB;
(b) 6 BAC = 90◦.

4. Let a and b be two positive real numbers. Suppose that ABC is a triangle and D a point in side AC
for which

6 BCA = 90◦

|AD| = a |DC| = b .

Let |BC| = x and 6 ABD = θ. Determine the values of x and θ for the configuration in which θ assumes
its maximum value.

5. Let C be a circle with centre O and radius k. For each point P 6= O, we define a mapping P −→ P ′

where P ′ is that point on OP produced for which

|OP ||OP ′| = k2 .

In particular, each point on C remains fixed, and the mapping at other points has period 2. This
mapping is called inversion in the circle C with centre O, and takes the union of the sets of circles and
lines in the plane to itself. (You might want to see why this is so. Analytic geometry is one route.)

(a) Suppose that A and B are two points in the plane for which |AB| = d, |OA| = r and |OB| = s, and
let their respective images under the inversion be A′ and B′. Prove that

|A′B′| = k2d

rs
.

(b) Using (a), or otherwise, show that there exists a sequence {Xn} of distinct points in the plane with
no three collinear for which all distances between pairs of them are rational.

6. Solve each of the following two systems of equations:

(a) x + xy + y = 2 + 3
√

2 , x2 + y2 = 6;

(b)

x2 + y2 +
2xy

x + y
= 1 ,
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√
x + y = x2 − y .

Solutions

Problem 1

1. First solution. See Figure 1.1. Let |AB| = u. Then

|BD|+ |AD| = u sin 100◦

sin 60◦
+

u sin 20◦

sin 60◦

=
u

sin 60◦
(sin 100◦ + sin 20◦)

=
2u sin 60◦ cos 40◦

sin 60◦
= 2u cos 40◦ = |BC| .

1. Second solution. See Figure 1.2. Let E and F be located in BC so that 6 DEC = 6 DFB = 80◦.
Then ∆ABD ≡ ∆EBD while triangles DEF , DCF and DBF are isosceles. Hence

BC = BF + FC = BD + DF = BD + DE = BD + AD .

1. Third solution. See Figure 1.3. Select G on BC so that BG = BD and H on AB so that HD‖BC.
Then, by filling in the angles, we see that triangles BDG, HBD, AHD and DGC are isosceles. Also
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triangles AHD and GCD are similar and DC = BH = HD. Hence ∆AHD ≡ ∆GCD and AD = GC.
Hence BC = BG + GC = BD + AD.

1. Fourth solution. See Figure 1.3. Define G as in the third solution. Triangles ABC and GCD are
similar. Hence, using the angle bisection theorem, we have that GC : CD = AB : BC = AD : DC, so
that GC = AD. Hence BC = BG + GC = BD + AD.

1. Fifth solution. See Figure 1.3. Define G and H as in the previous solution. ABGD is concyclic, so
AD = DG since they are chords subtending equal angles of 20◦ at the circumference. It follows from
the similarity of triangles AHD and GDC that they are congruent, so AD = DG = GC. Since also
BD = BG, the result follows.

Problem 2.

2. First solution. See Figure 2.1. Let AD and EF meet at H. Then

6 DHF = 6 HEI + 6 HIE

= 6 FEB + 6 AIE

= 6 FCB + (6 ABI + 6 BAI)

=
1
2
6 ACB +

1
2
6 ABC +

1
2
6 BAC = 90◦

as desired.
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2. Second solution. Identify points in the complex plane, with the circumcircle of ∆ABC being the unit
circle with centre 0. Let A ∼ 1, B ∼ cos 2β + i sin 2β, C ∼ cos 2γ + i sin 2γ. Observe that AD bisects
the arc BC, BE the arc CA and CF the arc AB, so that

D ∼ cos(β + γ) + i sin(β + γ) ,

E ∼ cos(γ + π) + i sin(γ + π) = −[cos γ + i sin γ] ,

F ∼ cos β + i sin β .

The vector EF is given by

(cos β + cos γ) + i(sinβ + sin γ) = cos
β − γ

2

[
cos

β + γ

2
+ i sin

β + γ

2

]

and the vector AD by

(cos(β + γ)− 1) + i sin(β + γ)

= 2 sin
β + γ

2

[
− sin

β + γ

2
+ i cos

β + γ

2

]

= 2 sin
β + γ

2

[
cos

β + γ

2
+ i sin

β + γ

2

]
i

from which it can be seen that they are perpendicular.

2. Third solution. [D. Brox] See Figure 2.3. Since EFBC is concyclic, 6 IFX = 6 CFE = 6 CBE =
6 EBA = 6 IBX. Hence FBIX is concyclic and so 6 FXB = 6 FIB. Similarly 6 EY C = 6 EIC.

Hence 6 AXY = 6 FXB = 6 FIB = 6 EIC = 6 EY C = 6 AY X, so that AX = XY . Since ∆AXY is
isosceles and AD bisects 6 XAY , then AD ⊥ FE.

2. Fourth solution. [L. Lessard] See Figure 2.4. Let O be the circumcentre of the triangle. Since
F bisects arc AB, then OF right bisects AB. Also OE right bisects AC. Since ∆OEF is isosceles,
6 OEF = 6 OFE and so 6 EUC = 6 FV B. Hence 6 AUV = 6 AV U , so that ∆AUV is isosceles. Thus,
the bisector of angle A right bisects UV and the result follows.
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2. Fifth solution. [H. Dong] See Figure 2.3. Using the fact that AFBCE is concyclic, we have that
6 AEF = 6 ACF = 6 BCF = 6 BEF . Also 6 AFE = 6 CFE. Hence ∆AFE ≡ ∆IFE (ASA) so that
EA = EI. Thus ∆EAI is isosceles with apex angle AEI whose bisector EF must right bisect the base
AI.

2. Sixth solution. See Figures 2.6 and 2.3. We first note a preliminary result: If P, R, Q, S are four
points on a circle and PQ and RS intersect inside the circle at T , then 6 STQ = 6 SPQ+ 6 PSR, which is
equal to half the sum of the angles subtended at the centre by arcs PR and SQ. Now, 6 ABE = 1

2
6 ABC,

so that arc AE subtends an angle equal to 6 ABC at the centre. Similarly BF subtends an angle equal
to 6 ACB at the centre and BD subtends an angle equal to 6 BAC at the centre. Hence FD subtends
an angle equal to 6 ACB + 6 BAC at the centre. By the preliminary result, 6 AHE is equal to half the
sum of the angles subtended at the centre by arcs AE and FD, namely half of 180◦. The result follows.

Problem 3.

3. First solution. See Figure 3.1. (a) Let point D be selected on the same side of QR as A so that triangle
QDR is equilateral. Then DA ⊥ QR so that 6 QDA = 6 RDA = 30◦ and 6 DQA = 6 DRA = 45◦.
Hence

∆PCQ ∼ ∆DAQ and ∆PBR ∼ ∆DAR .

A rotation about Q followed by a dilatation takes C to A and P to D so that

CQ : PQ = AQ : DQ .

Since 6 CQA = 6 PQD, ∆CAQ ∼ ∆PDQ so that AC : PD = AQ : DQ. Similarly, ∆BAR ∼ ∆PDR
and AB : PD = AR : DR. Since AQ = AR and DQ = DR, it follows that AC = AB.

(b) By the similar triangles identified in (a), 6 CAQ = 6 PDQ and 6 BAR = 6 PDR. Hence

6 CAB = 6 QAR− (6 CAQ + 6 BAR)
= 6 QAR− (6 PDQ + 6 PDR)
= 6 QAR− 6 QDR = 150◦ − 60◦ = 90◦ .
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3. Second solution. See Figure 3.2. Let S be the image of R under a counterclockwise rotation about
A through 90◦. Since AS = AR, 6 ASR = 6 ARS = 45◦ so 6 QRS = 30◦. Since QA = AR = AS, and
since 6 QAS = 150◦ − 90◦ = 60◦, 6 AQS = 6 ASQ = 60◦ and so 6 SQR = 45◦. Hence triangles CQP ,
BRP , SQR are similar, and CQ : PQ = QS : QR. Also 6 CQS = 45◦ ± 6 PQS = 6 PQR (± according
as S lies inside or outside of ∆PQR). Hence ∆CQS ∼ ∆PQR. Therefore 6 CSQ = 6 PRQ =⇒
6 CSA = 6 CSQ+60◦ = 6 PRQ+60◦ = 6 ARB. Also CS : RP = QC : QP = RB : RP =⇒ CS = RB.
Since in addition SA = RA, ∆CSA ≡ ∆BRA (SAS), so that AC = AB and 6 SAC = 6 RAB. Finally,

6 BAC = 6 BAS + 6 SAC = 6 BAS + 6 RAB = 6 RAS = 90◦ .

3. Third solution. [D. Brox] Note that sin 75◦ = cos 15◦ = (
√

6 +
√

2)/4 and sin 15◦ = (
√

6−√2)/4. Let

α =
(√

6−√2
2

)(√
2

2

)
=
√

3− 1
2

.

We solve the problem using vectors in the complex plane. Let lower case letters correspond to the points
in the plane given in upper case, so that a corresponds to A, et cetera.
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Since |r − a| = |q − a| = |r − q|/2 cos 15◦ = 1
2 (
√

6−√2)|r − q|, we have that

q − a =
√

6−√2
2

(√
6 +

√
2

4
−
√

6−√2
4

i

)
(q − r) = α

(√
3 + 1
2

−
√

3− 1
2

i

)
((q − p)− (r − p))

and

r − a =
√

6−√2
2

(√
6 +

√
2

4
+
√

6−√2
4

i

)
(r − q) = α

(√
3 + 1
2

+
√

3− 1
2

i

)
((r − p)− (q − p)) .

Applying the sine law yields

|b− r| = |r − p| sin 30◦/ sin 105◦ =
1
2
(
√

6−
√

2)|p− r| and |c− q| = 1
2
(
√

6−
√

2)|q − p|

so that

b− r =
√

6−√2
2

(√
2

2
−
√

2
2

i

)
(p− r) = α(i− 1)(r − p)

and

c− q =
√

6−√2
2

(√
2

2
+
√

2
2

i

)
(p− q) = −α(i + 1)(q − p) .

Hence

c− a = (q − a) + (c− q) = α

[(√
3− 1
2

−
√

3 + 1
2

i

)
(q − p)−

(√
3 + 1
2

−
√

3− 1
2

i

)
(r − p)

]

= iα

[
−

(√
3 + 1
2

+
√

3− 1
2

i

)
(q − p) +

(√
3− 1
2

+
√

3 + 1
2

i

)
(r − p)

]

= i[(r − a) + (b− r)] = i(b− a)

from which it follows that AC and AB are perpendicular segments of equal length.

3. Fourth solution. [D. Pritchard]
Lemma: For any triangle with angles α, β, γ,

sin2 α + sin2 γ − 2 sin α sin γ cos(β + 60◦) = sin2 β + sin2 γ − 2 sinβ sin γ cos(α + 60◦) .

Proof: Taking the difference between the two sides yields

sin2 α− sin2 β − sin γ[2 sin α cos(β + 60◦)− 2 sin β cos(α + 60◦)]

=
1
2
[cos 2β − cos 2α]− sin(α + β)[sin(α + β + 60◦) + sin(α− β − 60◦)

− sin(β + α + 60◦)− sin(β − α− 60◦)]
= sin(α + β) sin(α− β)− sin(α + β)[sin(α− β) cos 60◦ − cos(α− β) sin 60◦

− sin(β − α) cos 60◦ + cos(β − α) sin 60◦]
= sin(α + β)[sin(α− β)− 2 sin(α− β) cos 60◦] = 0 .

(a) Wolog, we can let the lengths of PQ, PR and QR be sin R, sin Q and sinP , respectively, since by
the Law of Sines, these lengths are proportional to these quantities. Then

|AR| = sin P sin 15◦

sin 150◦
=
√

3− 1√
2

sinP
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|RB| = sin Q sin 30◦

sin 105◦
=
√

3− 1√
2

sin Q

|AB|2 =
(√

3− 1√
2

)2

[sin2 P + sin2 Q− 2 sin P sinQ cos(R + 60◦)]

Similarly

|AC|2 =
(√

3− 1√
2

)2

[sin2 P + sin2 R− 2 sin P sin R cos(Q + 60◦)]

Hence AB = AC.

(b) |BP | = sin Q sin 45◦/ sin 105◦ = (
√

3− 1) sin Q, |CP | = (
√

3− 1) sin R and

|BC|2 = (
√

3− 1)2[(sin2 R + sin2 Q− 2 sinR sin Q cos(P + 60◦)]

from which |BC|2 = 2|AB|2, and the result follows.

3. Fifth solution. [D. Nicholson] See Figure 3.5. Let |AQ| = |AR| = u, |BR| = v, |CQ| = w, α =
6 QPR, β = 6 PQR and γ = 6 PRQ. Let D,E, F be the respective feet of the perpendiculars from
A,B, C to QR, PR and PQ.

|PQ| = |QC| cos 45◦ + |CF | cot 30◦ =
1√
2
(1 +

√
3)w

|PR| = 1√
2
(1 +

√
3)v

and
|QR| = 2u cos 15◦ =

1√
2
(1 +

√
3)u .

Hence

cos α =
v2 + w2 − u2

2vw

cos β =
u2 + w2 − v2

2uw

cos γ =
u2 + v2 − w2

2uv
.

Then
|AC|2 = u2 + w2 − 2uw cos(β + 60◦)

=
1
2
(u2 + v2 + w2) +

√
3uw sinβ

|AB|2 = u2 + v2 − 2uv cos(γ + 60◦)

=
1
2
(u2 + v2 + w2) +

√
3uv sin γ .

Now |PC| = |FC|csc 30◦ = 2|FC| = √
2w and |PB| = √

2v. Hence

|BC|2 = 2v2 + 2w2 − 4vw cos(α + 60◦)

= u2 + v2 + w2 + 2
√

3vw sin α .

Since
sin α : sin β : sin γ = |QR| : |PR| : |PQ| = u : v : w ,

uw sinβ = uv sin γ = vw sin α .
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Thus |AC| = |AB| and |BC|2 = |AC|2 + |AB|2, yielding the desired result.

3. Sixth solution. [T. Costin] See Figure 3.1. First, we establish a preliminary result. Let ABC be an
arbitrary triangle. Using the standard notation and applying the sine law, we find that

a2 + b2 − 2ab cos(C + 60◦) =
b2 sin2 A

sin2 B
+ b2 − 2b2 sin A

sin B

(
cosC

2
−
√

3 sin C

2

)

=
b2

sin2 B
[sin2 A + sin2 B − sin A sin B cos C +

√
3 sin A sin B sin C]

=
b2

sin2 B
[sin2 B + sin2 A− sin A cosC(sinA cosC + cos A sin C) +

√
3 sinA sin B sin C]

=
b2

sin2 B
[sin2 B + sin2 A sin2 C − sin A cosA sin C cos C +

√
3 sin A sin B sin C] .

Since this is symmetric in A and C, it is equal to b2 + c2 − 2bc cos(A + 60◦), and, by further symmetry,
to c2 + a2 − 2ac cos(B + 60◦).

(a) Let D be constructed as in the figure, and note that QC : QA = r : p by similar triangles. By the
Law of Cosines,

AC2 = QC2 + AQ2 − 2QC ·QA cos(Q + 60◦)

=
QA2

p2
[r2 + p2 − 2pr cos(Q + 60◦)]

and

AB2 =
RA2

p2
[q2 + p2 − 2qp cos(R + 60◦)] .

An application of the preliminary result to ∆PQR yields AB = AC.

(b) PC : AD = r : p and PB : AD = q : p. Hence, by the Law of Cosines applied to ∆PCB,

BC2 =
AD2

p2
[r2 + q2 − 2qr cos(P + 60◦)] .

Since p = QR = 2QA cos 15◦ and

AD = QD cos 30◦ −QA sin 15◦ = p[cos 30◦ − 1
2

tan 15◦]

=
p

2
[
√

3− (2−
√

3)] = (
√

3− 1)p ,
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so BC2 = (4− 2
√

3)[r2 + q2 − 2qr cos(P + 60◦)]. But

AB2 + AC2 =
2QA2

p2
[r2 + p2 − 2pr cos(Q + 60◦)] =

1
2

sec2 15◦[r2 + q2 − 2qr cos(P + 60◦)] = BC2

as desired.

3. Seventh solution. [Y. Shen] (a) From the Sine Law,

AR = AQ = QR(2 sin 15◦)

BR = PR/2 sin 75◦

and
CQ = PQ/2 sin 75◦ .

Hence

AB2 = AR2 + BR2 − 2AR ·BR cos(60◦ + 6 PRQ)

= 4 sin2 15◦QR2 +
PR2

2(1− cos 150◦)
− 2RQ · PR tan 15◦

(
1
2
· PR2 + QR2 − PQ2

2PR ·QR
−
√

3
2
· sin 6 PRQ

)

= (2−
√

3)QR2 + (2−
√

3)PR2 − 1
2
(2−

√
3)(PR2 + QR2 − PQ2) + (4

√
3− 6)[PQR]

=
1
2
(2−

√
3)(PQ2 + QR2 + PR2) + (4

√
3− 6)[PQR] .

By symmetry, AC2 = AB2, so AC = AB.

(b)

BP =
√

2
2
· RP

sin 75◦
, CP =

√
2

2
· PQ

sin 75◦
.

Then

BC2 = BP 2 + CP 2 − 2BP · CP cos(60◦ + 6 QPR)

= 2PR2(2−
√

3) + 2PQ2(2−
√

3)− (2−
√

3)(PR2 + PQ2 −QR2) + (8
√

3− 12)[PQR]

= AB2 + AC2
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so that 6 BAC = 90◦.

Problem 4.

4. First solution. See Figure 4.1. θ assumes its maximum value when the circumcircle of ∆ADB is
tangent to BC. For, if X is any other point on CB produced, X lies outside this circle and AD
subtends at X a smaller angle than it subtends at the circumference of the circle.

Let O be the centre of the circumcircle and r its radius. Then O lies on the right bisector of AD and
two radii are OD and OB. Since BC is tangent, OB ⊥ BC. Hence x2 + (a/2)2 = r2 = (b + (a/2))2 so
that x =

√
b(a + b). Since θ = arctan a+b

x − arctan b
x ,

tan θ =
a/x

1 + [b(a + b)/x2]
=

a

2x
=

a

2
√

b(a + b)
.

Comment. The angle can also be identified by noting that

6 ABD =
1
2
6 AOD = 6 EOD = arcsin

(1/2)a
r

= arcsin
a

a + 2b
.

4. Second solution. See Figure 4.2. (using calculus) As in (a), for general position of B we can calculate

tan θ =
a/x

1 + [b(a + b)/x2]
=

ax

x2 + b(a + b)
.

Since 0 < θ < π/2, θ is maximized when tan θ is maximized or when cot θ = 1/ tan θ is minimized. Now

d

dx
cot θ =

d

dx

(
x

a
+

b(b + a)
ax

)

=
1
a
− b(b + a)

ax2

=
x2 − b(a + b)

ax2
.

Thus, cot θ is decreasing when x2 < b(a + b) and increasing when x2 > b(b + a) and so achieves its
minimum value of (2

√
b(a + b))/a when x =

√
b(a + b).

4. Third solution. [D. Brox] As in the previous solution we find that

cot θ =
1
a

[
x +

b(a + b)
x

]
.

Using the arithmetic-geometric means inequality, we find that cot θ ≥ 2
a

√
b(a + b) with equality if

and only if x2 = b(a + b). Hence the maximum value of θ = arccot ( 2
a

√
b(a + b)) is assumed when

x =
√

b(a + b).

4. Fourth solution. [K. Choi] Comparing two expressions for the area of triangle ABD, we have that

ax = sin θ
√

x2 + b2
√

x2 + (a + b)2

or

csc2θ =
1
a2

[
x2 + (b2 + (a + b)2) +

b2(a + b)2

x2

]

=
1
a2

[(
x− b(a + b)

x

)2

+ (a + 2b)2
]

.
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Since 0 < θ < 90◦, θ is maximum when csc θ is minimum, i.e., when x =
√

b(a + b). For this value of x,

cscθ =
a + 2b

a
whence θ = arcsin

a

a + 2b
.

4. Fifth solution. By the Law of Cosines,

a2 = [(a + b)2 + x2] + [b2 + x2]− 2
√

b2(a + b)2 + [a2 + 2b(a + b)]x2 + x4 cos θ

whence

cos2 θ =
[b(a + b) + x2]2

[b(a + b) + x2]2 + a2x2

and

sin2 θ =
a2x2

[b(a + b) + x2]2 + a2x2
.

Thus

csc2θ = 1 +
[
b(a + b) + x2

ax

]2

.

Since 0 < θ < 90◦, to maximize θ, we must minimize csc2θ, and hence minimize

1
a

[
b(a + b)

x
+ x

]
.

This can be done as in the third solution. When x =
√

b(a + b), we find that

sin2 θ =
a2

(2b + a)2

and so the maximum angle is arcsin(a/(2b + a)).

4. Sixth solution. [Y. Shen] As in the second solution,

tan θ =
ax

x2 + b(b + a)

whence (tan θ)x2 − ax + b(b + a) tan θ = 0. This quadratic is satisfiable by real values of x if and only
if a2 ≥ 4b(b + a) tan2 θ or

tan θ ≤ a

2
√

b(b + a)
.

When tan θ = a/(2
√

b(b + a)), then x =
√

b(b + a), and we obtain the same result as before.

Problem 5.

5. First solution. See Figure 5.1. Since 6 O is common and OA : OB = OB′ : OA′, triangles OAB and
OB′A′ are similar. Hence

r : s : d =
k2

s
:

k2

r
: |A′B′|

from which it follows that |A′B′| = (k2d)/(rs).

(b) We first show that the inversion with respect to a circle C of a line not passing through its centre
O is a circle passing through O. Let F be the foot of the perpendicular from the point O to the line,
and let P be any other point on the line. Let F ′ and P ′ be their respective images with respect to the
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inversion. As in (a), we have that ∆OPF ∼ ∆OF ′P ′ whence 6 OP ′F ′ = 6 OFP = 90◦. Hence P ′ lies
on the circle with diameter OF ′.

Note that applying the inversion twice yields the identity, so that the image of F ′ is F . Let P ′ be any
point distinct from O on the circle of diameter OF ′. Its image P must satisfy 6 OFP = 6 OP ′F ′ = 90◦

and so it lies on the line perpendicular to OF . Hence the image of the line is the entire circle apart
from O.

To construct our example, let L be a line at distance 1 from O, with F the foot of the perpendicular
from O to the line. Let q be any rational number with 0 < q < 1 and let Pq be selected on L with
6 PqOF = 2 arctan q. Then tan 6 PqOF = 2q(1 − q2)−1 so that |FPq| = 2q(1 − q2)−1 and |OPq| =
(1 + q2)(1 − q2)−1. Hence all pairs of points Pq are rational distance apart and each Pq is a rational
distance from O. Invert this line with respect to any circle with centre O and rational radius to obtain
a circle through O. All images of points Pq lie on this circle, so no three are collinear. We can arrange
these points in a sequence which satisfies the requirements.

5. Second solution. See Figure 5.1. (a) Suppose that |A′B′| = d′ and let 6 AOB = α. By the Law of
Cosines, d2 = r2 + s2 − 2rs cosα. Since |OA′| = k2/r and |OB′| = k2/s,

d′2 =
k4

r2
+

k4

s2
− 2k4

rs
cos α =

k4

r2s2
[r2 + s2 − 2rs cosα] =

k4d2

r2s2

as desired. Observe that if k, r, s are rational, then d′ is rational if and only if d is rational.

(b) In the cartesian plane, let C be the circle of radius 1 and centre (0, 0). Consider the line L with
equation x = 1. A point (x, y) is on the image of this line under inversion with respect to C if and only
if x > 0 and the point (1, y/x) on the ray through (0, 0) and (x, y) satisfies (x2 + y2)(1 + y2/x2) = 1.
This is equivalent to x2 + y2 = x or (x − 1

2 )2 + y2 = 1
4 . Thus, the image of the line L is the circle of

radius 1
2 and centre ( 1

2 , 0), and no three points on this circle are collinear.

To solve the problem, we select a sequence {Un} of points on L for which |OUn| is rational and Un has
rational coordinates, and let {Xn} be the images of these with respect to inversion in C. But such a
selection is possible since there are infinitely many rational pythagorean triples whose smallest number
is 1. For example, we can take

Un ∼
(

1,
2n2 + 2n

2n + 1

)

so that |OUn| = (2n2 + 2n + 1)/(2n + 1).
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5. Third solution. [Y. Shen] An alternative approach to the solution of the second part comes by the use
of Ptolemy’s Theorem. See Figure 5.3. Let a circle of diameter l be given and two additional points
on the circle be given whose chords make angles α and β with the diameter. If the points are on the
same side of the diameter and are distant l apart, we have, by the Law of Cosines,

l2 = cos2 α + cos2 β − 2 cos α cos β(cosα cos β − sin α sin β)

= cos2 α(1− cos2 β) + cos2 β(1− cos2 α) + 2 cos α cosβ sin α sinβ)

= (cos α sinβ + sin α cos β)2

so that l = sin α cos β+cos α sinβ. On the other hand, if the points are on the same side of the diameter,
then l2 = cos2 α + cos2 β − 2 cos α cos β(cos(α − β)) so that l = cos α sin β − cos β sin α. We can locate
infinitely many points on the circumference of the circle for which the sine and cosine of the angle its
chord makes with a given diameter are rational, and the distance between any pair of these points will
be rational.
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Problem 6.

6. (a) First solution. Let u = x + y and v = xy. Then u + v = 2 + 3
√

2 and u2 − 2v = 6. Thus,
u2 + 2u = 10 + 6

√
2 so that (u + 1)2 = 11 + 6

√
2 = (3 +

√
2)2. Therefore

(u, v) = (2 +
√

2, 2
√

2) or (u, v) = (−4−
√

2, 6 + 4
√

2) .

In the first case, x and y are roots of the quadratic equation

0 = t2 − (2 +
√

2)t + 2
√

2 = (t− 2)(t−
√

2)

so that (x, y) = (2,
√

2), (
√

2, 2). In the second case, x and y are roots of the quadratic equation

0 = t2 + (4 +
√

2)t + (6 + 4
√

2) ,

and these are nonreal.

6. (a) Second solution. [D. Nicholson] Observe that (x+y+1)2 = (x2+y2)+2(x+y+xy)+1 = 11+6
√

2 =
(3 +

√
2)2. Thus x + y = 2 +

√
2 or −4− 2

√
2, and we can proceed as in the first solution.

6. (b) First solution. The first equation can be transformed to

(x + y)2 − 2xy +
2xy

x + y
= 1

or to
0 = (x + y)3 − (x + y)− 2xy[(x + y)− 1]

= [(x + y)− 1][(x + y)2 + (x + y)− 2xy]

= [(x + y)− 1][(x2 + y2) + (x + y)] .

Suppose that x + y = 1. Then the second equation becomes x2 − (1 − x) = 1 or 0 = x2 + x − 2 =
(x + 2)(x− 1). Hence (x, y) = (−2, 3), (1, 0) and both these solutions check out.
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Suppose that (x2 + y2)+ (x+ y) = 0. Then x and y cannot be real. Otherwise, x+ y = −(x2 + y2) ≤ 0.
By the first equation, x + y 6= 0 and by the second x + y > 0 and we obtain a contradiction. From the
second equation

x + y = x4 − 2x2y + y2

=⇒ 0 = x4 − 2yx2 − x + (y2 − y)

= (x2 − x− y)(x2 + x− y + 1)

so that y = x2 − x or y = x2 + x + 1.

Let x2 + y2 + x + y = 0 and y = x2 − x. Then x2 = x + y = −(x2 + y2) ⇒ y2 = −2x2 ⇒ y =
±i
√

2x ⇒ x2 = (1 ± i
√

2)x. Since x + y must be nonzero, x = 0 is inadmissible. Hence (x, y) =
(1 + i

√
2,−2 + i

√
2), (1− i

√
2,−2− i

√
2), and both of these check out.

Let x2 + y2 + x + y = 0 and y = x2 + x + 1. Then y2 + 2y− 1 = 0 or (y + 1)2 = 2. Hence y = −1±√2,
so that x2 + x + (2∓√2) = 0. Hence

x =
−1± i

√
7± 4

√
2

2

and we obtain a pair of complex solutions for (x, y). Note that, when y = x2 + x + 1, we have
x+y = (x+1)2 and so must take

√
x + y = −(x+1) in order to corroborate the equation

√
x + y = x2−y.

6. (b) Second solution. Let x+y = u2 so that u = x2−y = x2−(u2−x), Therefore 0 = x2−u2 +(x−u) =
(x− u)(x + u + 1), whence y = x2 − x or y = x2 + x + 1.

Plugging y = x2 − x into the first equation yields

0 = x4 − 2x3 + 2x2 + 2x− 3 = (x− 1)(x + 1)(x2 − 2x + 3)

so that
(x, y) = (1, 0), (−1, 2), (1 + i

√
2,−2 + i

√
2), (1− i

√
2,−2− i

√
2) .

All of these work except (x, y) = (−1, 2) which is extraneous.

Plugging y = x2 + x + 1 = (x + 1)2 − x into the first equation and using x + y = (x + 1)2 yields

0 = x2(x + 1)2 + [(x + 1)2 − x]2(x + 1)2 + 2x[(x + 1)2 − x]− (x + 1)2

= (x + 1)6 − 2x(x + 1)4 + (2x2 + 2x− 1)(x + 1)2 − 2x2

= [(x + 1)2 − 1][(x + 1)4 − (2x− 1)(x + 1)2 + 2x2]

= x(x + 2)(x4 + 2x3 + 5x2 + 4x + 2) .

The first two factors yield the possibilities (x, y) = (0, 1), (−2, 3); the solution (x, y) = (0, 1) is extrane-
ous, but (x, y) = (−2, 3) checks out. Since

x4 + 2x3 + 5x2 + 4x + 2 = (x2 + x + 2)2 − 2 = (y + 1)2 − 2 ,

additional pairs of complex solutions can be obtained by solving

x2 + x + 2 = ±
√

2 y = −1±
√

2 .

Comment. Since

x4 + 2x3 + 5x2 + 4x + 2 = (x2 + x + 1)2 + x2 + (x + 1)2 = (x2 + x)2 + (2x + 1)2 + 1 ,

we see that the quartic factor will yield no more real solutions. By noting that

x4 + 2x3 + 5x2 + 4x + 2 = (x2 + x)2 + 4(x2 + x) + 2 ,
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we can find these solutions by obtaining and then solving x2 + x = −2±√2.

We can get a picture of the situation for real solutions. See Figure 6(b). The equation
√

x + y = x2−y
requires x + y ≥ 0 and y ≥ x2 to be viable for a real solution. The locus of this pair of inequalities is
hatched. The first of the two given equations also requires x + y 6= 0. Hence there are no real solutions
with x2 + y2 + x + y = 0. However, when x + y = 1 there is one real solution (x, y) = (1, 0) for which
y = x2 − x and one real solutions (x, y) = (−2, 3) for which y = x2 + x + 1. The putative solutions
(x, y) = (−1, 2), (0, 1) lie outside the hatched region and so are extraneous.
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