
Solutions For May

675. ABC is a triangle with circumcentre O such that 6 A exceeds 90◦ and AB < AC. Let M and N be
the midpoints of BC and AO, and let D be the intersection of MN and AC. Suppose that AD =
1
2 (AB + AC). Determine 6 A.

Solution. Assign coordinates: A ∼ (0, 0), B ∼ (2 cos θ, 2 sin θ), C ∼ (2u, 0) where 90◦ < θ < 180◦ and
u > 1. First, we determine O as the intersection of the right bisectors of AB and AC. The centre of AB
has coordinates (cos θ, sin θ) and its right bisector has equation

(cos θ)x + (sin θ)y = 1 .

The centre of segment AC has coordinates (u, 0) and its right bisector has equation x = u. Hence, we find
that

O ∼
(

u,
1− u cos θ

sin θ

)

N ∼
(

1
2
u,

1− u cos θ

2 sin θ

)
M ∼ (u + cos θ, sin θ)

and
D ∼ (u + 1, 0) .

The slope of MD is (sin θ)/(cos θ − 1). The slope of ND is (u cos θ − 1)/((u + 2) sin θ). Equating these two
leads to the equation

u(cos2 θ − sin2 θ − cos θ) = 2 sin2 θ + cos θ − 1

which reduces to
(u + 1)(2 cos2 θ − cos θ − 1) = 0 .

Since u + 1 > 0, we have that 0 = 2 cos2 θ − cos θ − 1 = (2 cos θ + 1)(cos θ − 1). Hence cos θ = −1/2 and so
6 A = 120◦.

676. Determine all functions f from the set of reals to the set of reals which satisfy the functional equation

(x− y)f(x + y)− (x + y)f(x− y) = 4xy(x2 − y2)

for all real x and y.
Solution. Let u and v be any pair of real numbers. We can solve x + y = u and x− y = v to obtain

(x, y) =
(

1
2
(u + v),

1
2
(u− v)

)
.

From the functional equation, we find that vf(u)− uf(v) = (u2 − v2)uv, whence

f(u)
u

− u2 =
f(v)

v
− v2 .

Thus (f(x)/x)− x2 must be some constant a, so that f(x) = x3 + ax. This checks out for any constant a.

677. For vectors in three-dimensional real space, establish the identity

[a× (b−c)]2 +[b× (c−a)]2 +[c× (a−b)]2 = (b×c)2 +(c×a)2 +(a×b)2 +(b×c+c×a+a×b)2 .
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Solution 1. Let u = b× c, v = c× a and w = a×b. Then, for example, a× (b− c) = a×b− a× c =
a× b + c× a = v + w. The left side is equal to

(v+w) · (v+w)+(u+w) · (u+w)+(u+v) · (u+v) = 2[(u ·u)+(v ·v)+(w ·w)+(u ·v)+(v ·w)+(w ·u)]

while the right side is equal to

(u · u) + (v · v) + (w ·w) + (u + v + w)2

which expands to the final expression for the left side.

Solution 2. For vectors u, v, w, we have the identities

(u× v)×w = (u ·w)v − (v ·w)u

and
u · (v ×w) = (u× v) ·w .

Using these, we find for example that

[a× (b− c)] · [a× (b− c)] = [a× (b− c)× a] · (b− c)
= {(a · a)(b− c)− [(b− c) · a]a} · (b− c)

= |a|2[|b|2 + |c|2 − 2(b · c)]− [(b · a− c · a]2

= |a|2[|b|2 + |c|2 − 2(b · c)]− (b · a)2 − (c · a)2 + 2(b · a)(c · a) .

Also
(b× c) · (b× c) = [(b · b)c− (c · b)b] · c

= |b|2|c|2 − (c · b)2

and
(b× c) · (c× a) = [(b× c)× c] · a = (b · c)(c · a)− (c · c)(b · a) .

From these the identity can be checked.

678. For a, b, c > 0, prove that
1

a(b + 1)
+

1
b(c + 1)

+
1

c(a + 1)
≥ 3

1 + abc
.

Solution 1. It is easy to verify the following identity

1
a(1 + b)

+
1

1 + abc
=

1
1 + abc

(
1 + a

a(1 + b)
+

b(1 + c)
1 + b

)
.

This and its analogues imply that

1
a(b + 1)

+
1

b(c + 1)
+

1
c(a + 1)

+
3

1 + abc
=

1
1 + abc

(
1 + a

a(1 + b)
+

b(1 + c)
1 + b

+
1 + b

b(1 + c)
+

c(1 + a)
1 + c

+
1 + c

c(1 + a)
+

a(1 + b)
1 + a

)
.

The arithmetic-geometric means inequality yields

1
a(b + 1)

+
1

b(c + 1)
+

1
c(a + 1)

+
3

1 + abc
≥ 6× 1

1 + abc
.
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Miraculously, subtracting 3/(1 + abc) from both sides yields the required inequality. ♥

Solution 2. Multiplying the desired inequality by (1+abc)a(b+1)b(c+1)c(a+1), after some manipulation,
produces the equivalent inequality:

abc(bc2 + ca2 + ab2) + (bc + ca + ab) + (abc)2(a + b + c) + (bc2 + ca2 + ab2)
≥ 2abc(a + b + c) + 2abc(bc + ca + ab) .

Pairing off the terms of the left side and applying the arithemetic-geometric means inequality, we get

(a2b3c + bc) + (ab2c3 + ac) + (a3bc2 + ab) + (a3b2c2 + ab2)

+ (a2b3c2 + bc2) + (a2b2c3 + ca2)

≥ 2ab2c + 2abc2 + 2a2bc + 2a2b2c + 2ab2c2 + 2a2bc2

= 2abc(a + b + c) + 2abc(ab + bc + ca)

as required.

Solution 3. [C. Deng] Taking the difference between the two sides yields, where the summation is a
cyclic one,

∑ (
1

a(b + 1)
− 1

1 + abc

)
=

∑ 1 + abc− a(b + 1)
a(b + 1)(1 + abc)

=
1

1 + abc

∑ (
b

b + 1
(c− 1)− 1

a(b + 1)
(a− 1)

)
=

1
1 + abc

∑ (
c

c + 1
(a− 1)− 1

a(b + 1)
(a− 1)

)
=

1
1 + abc

∑
(a− 1)

(
c

c + 1
− 1

a(b + 1)

)
=

1
1 + abc

∑ (
a2 − 1

a

)(
abc + ac− c− 1

(a + 1)(b + 1)(c + 1)

)
=

1
(1 + abc)(1 + a)(1 + b)(1 + c)

∑ (
a2bc + a2c +

c

a
+

1
a
− ac− a− bc− c

)
=

1
(1 + abc)(1 + a)(1 + b)(1 + c)

∑ (
a2bc + a2c− 2ab− 2a +

b

c
+

1
c

)
=

1
(1 + abc)(1 + a)(1 + b)(1 + c)

∑ b + 1
c

(a2c2 − 2ac + 1)

=
1

(1 + abc)(1 + a)(1 + b)(1 + c)

∑ b + 1
c

(ac− 1)2 ≥ 0 ,

as desired.

Solution 4. [S. Seraj] Using the Arithmetic-Geometric Means Inequality, we obtain a2c+a2b2c3 ≥ 2a2bc2

and ab + a3bc2 ≥ 2a2bc and the two cyclic variants of each. Adding the six inequalities yields that

a2c + a2b2c3 + ab2 + a3b2c2 + bc2 + a2b3c2 + ab + a3bc2 + bc + a2b3c + ac + ab2c3

≥ 2a2bc2 + 2a2b2c + 2ab2c2 + 2a2bc + 2ab2c + 2abc2 .

Adding the same terms to both sides of the equations, and then factoring the two sides leads to

(1 + abc)(3abc + a2bc + ab2c + abc2 + a2c + ab2 + bc2 + ab + bc + ca)
≥ 3abc(abc + ac + bc + ab + a + b + c + 1) = 3abc(a + 1)(b + 1)(c + 1) .
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Carrying out some divisions and strategically grouping terms in the numerator yields that

(abc2 + bc2 + abc + bc) + (a2bc + a2c + abc + ac) + (ab2c + ab2 + abc + ab)
abc(a + 1)(b + 1)(c + 1)

≥ 3
1 + abc

.

Factoring each bracket and simplifying leads to the desired inequality.

679. Let F1 and F2 be the foci of an ellipse and P be a point in the plane of the ellipse. Suppose that
G1 and G2 are points on the ellipse for which PG1 and PG2 are tangents to the ellipse. Prove that
6 F1PG1 = 6 F2PG2.

Solution. Let H1 be the reflection of F1 in the tangent PG1, and H2 be the reflection of F2 in the tangent
PG2. We have that PH1 = PF1 and PF2 = PH2. By the reflection property, 6 PG1F2 = 6 F1G1Q =
6 H1G1Q, where Q is a point on PG1 produced. Therefore, H1F2 intersects the ellipse in G1. Similarly,
H2F1 intersects the ellipse in K2. Therefore

H1F2 = H1G1 + G1F2 = F1G1 + G1F2

= F1G2 + G2F2 = F1G2 + G2H2 = H2F1 .

Therefore, triangle PH1F2 and PF1H2 are congruent (SSS), so that 6 H1PF2 = 6 H2PF1. It follows that

26 F1PG1 = 6 H1PF1 = 6 H2PF2 = 26 F2PG2

and the desired result follows.

680. Let u0 = 1, u1 = 2 and un+1 = 2un + un−1 for n ≥ 1. Prove that, for every nonnegative integer n,

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

Solution 1. Suppose that we have a supply of white and of blue coaches, each of length 1, and of red
coaches, each of length 2; the coaches of each colour are indistinguishable. Let vn be the number of trains
of total length n that can be made up of red, white and blue coaches of total length n. Then v0 = 1, v1 = 2
and v2 = 5 (R, WW, WB, BW, BB). In general, for n ≥ 1, we can get a train of length n + 1 by appending
either a white or a blue coach to a train of length n or a red coach to a train of length n − 1, so that
vn+1 = 2vn + vn−1. Therefore vn = un for n ≥ 0.

We can count vn in another way. Suppose that the train consists of i white coaches, j blue coaches
and k red coaches, so that i + j + 2k = n. There are (i + j + k)! ways of arranging the coaches in order;
any permutation of the i white coaches among themselves, the j blue coaches among themselves and k red
coaches among themselves does not change the train. Therefore

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

Solution 2. Let f(t) =
∑∞

n=0 untn. Then

f(t) = u0 + u1t + (2u1 + u0)t2 + (2u2 + u1)t3 + · · ·
= u0 + u1t + 2t(f(t)− u0) + t2f(t) = u0 + (u1 − 2u0)t + (2t + t2)f(t)

= 1 + (2t + t2)f(t) ,

whence
f(t) =

1
1− 2t− t2

=
1

1− t− t− t2

=
∞∑

n=0

(t + t + t2)n =
∞∑

n=0

tn
[∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}]
.
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Solution 3. Let wn be the sum in the problem. It is straightforward to check that u0 = w0 and u1 = w1.
We show that, for n ≥ 1, wn+1 = 2wn + wn−1 from which it follows by induction that un = wn for each n.
By convention, let (−1)! = ∞. Then, for i, j, k ≥ 0 and i + j + 2k = n + 1, we have that

(i + j + k)!
i!j!k!

=
(i + j + k)(i + j + k − 1)!

i!j!k!

=
(i + j + k − 1)!

(i− 1)!j!k!
+

(i + j + k − 1)!
i!(j − 1)!k!

+
(i + j + k − 1)!

i!j!(k − 1)!
,

whence

wn+1 =
∑ {

(i + j + k − 1)!
(i− 1)!j!k!

: i, j, k ≥ 0, (i− 1) + j + 2k = n

}
+

∑ {
(i + j + k − 1)!

i!(j − 1)!k!
: i, j, k ≥ 0, i + (j − 1) + 2k = n

}
+

∑ {
(i + j + k − 1)!

i!j!(k − 1)!
: i, j, k ≥ 0, i + j + 2(k − 1) = n− 1

}
= wn + wn + wn−1 = 2wn + wn−1

as desired.

681. Let a and b, the latter nonzero, be vectors in R3. Determine the value of λ for which the vector equation

a− (x× b) = λb

is solvable, and then solve it.

Solution 1. If there is a solution, we must have a · b = λ|b|2, so that λ = (a · b)/|b|2. On the other
hand, suppose that λ has this value. Then

0 = b× a− b× (x× b)
= b× a− [(b · b)x− (b · x)b]

so that
b× a = |b|2x− (b · x)b .

A particular solution of this equation is

x = u ≡ b× a
|b|2

.

Let x = z be any other solution. Then

|b|2(z− u) = |b|2z− |b|2u
= (b× a + (b · z)b)− (b× a + (b · u)b)
= (b · z)b

so that z− u = µb for some scalar µ.

We check when this works. Let x = u + µb for some scalar µ. Then

a− (x× b) = a− (u× b) = a− (b× a)× b
|b|2

= a +
b× (b× a)

|b|2

= a +
(b · a)b− (b · b)a

|b|2

= a +
(

b · a
|b|2

)
b− a = λb ,
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as desired. Hence, the solutions is

x =
b× a
|b|2

+ µb ,

where µ is an arbitrary scalar.

Solution 2. [B. Yahagni] Suppose, to begin with, that {a,b} is linearly dependent. Then a = [(a ·
b)/|b|2]b. Since (x×b) ·b = 0 for all x, the equation has no solutions except when λ = (a ·b)/|b|2. In this
case, it becomes x× b = 0 and is satisfied by x = µb, where µ is any scalar.

Otherwise, {a,b,a× b} is linearly independent and constitutes a basis for R3. Let a solution be

x = αa + µb + β(a× b) .

Then
x× b = α(a× b) + β[(a× b)× b] = α(a× b) + β(a · b)b− β(b · b)a

and the equation becomes
(1 + β|b|2)a− β(a · b)b− α(a× b) = λb .

Therefore α = 0, µ is arbitrary, β = −1/|b|2 and λ = −β(a · b) = (a · b)/|b|2.

Therefore, the existence of a solution requires that λ = (a · b)/|b|2 and the solution then is

x = µb− 1
|b|2

(a× b) .

Solution 3. Writing the equation in vector components yields the system

b3x2 − b2x3 = a1 − λb1 ;

−b3x1 + b1x3 = a2 − λb2 ;

b2x1 − b1x2 = a3 − λb3 .

The matrix of coefficients of the left side is of rank 2, so that the corresponding homogeneous system of
equations has a single infinity of solutions. Multiplying the three equations by b1, b2 and b3 respectively and
adding yields

0 = a1b1 + a2b2 + a3b3 − λ(b2
1 + b2

2 + b2
3) .

Thus, for a solution to exist, we require that

λ =
a1b1 + a2b2 + a3b3

b2
1 + b2

2 + b2
3)

.

In addition, we learn that the corresponding homogeneous system is satisfied by

(x1, x2, x3) = µ(b1, b2, b3)

where µ is an arbitrary scalar.

It remains to find a particular solution for the nonhomogeneous system. Multiplying the third equation
by b2 and subtracting the second multiplied by b3, we obtain that

(b2
2 + b2

3)x1 = b1(b2x2 + b3x3) + (a3b2 − a2b3) .

Therefore, setting b2
1 + b2

2 + b2
3 = b2, we have that

b2x1 = b1(b1x1 + b2x2 + b3x3) + (a3b2 − a2b3) .
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Similarly
b2x2 = b2(b1x1 + b2x2 + b3x3) + (a1b3 − a3b1) ,

b2x3 = b3(b1x1 + b2x2 + b3x3) + (a2b1 − a1b2) .

Observing that b1x1 + b2x2 + b3x3 vanishes when

(x1, x2, x3) = (a3b2 − a2b3, a1b3 − a3b1, a2b1 − a1b2) ,

we obtain a particular solution to the system:

(x1, x2, x3) = b−2(a3b2 − a2b3, a1b3 − a3b1, a2b1 − a1b2) .

Adding to this the general solution of the homogeneous system yields the solution of the nonhomogeneous
system.

682. The plane is partitioned into n regions by three families of parallel lines. What is the least number of
lines to ensure that n ≥ 2010?

Solution. Suppose that there are x, y and z lines in the three families. Assume that no point is common
to three distinct lines. The x+ y lines of the first two families partition the plane into (x+1)(y +1) regions.
Let λ be one of the lines of the third family. It is cut into x+y +1 parts by the lines in the first two families,
so the number of regions is increased by x + y + 1. Since this happens z times, the number of regions that
the plane is partitioned into by the three families of

n = (x + 1)(y + 1) + z(x + y + 1) = (x + y + z) + (xy + yz + zx) + 1 .

Let u = x + y + z and v = xy + yz + zx. Then (by the Cauchy-Schwarz Inequality for example),
v ≤ x2 + y2 + z2, so that u2 = x2 + y2 + z2 + 2v ≥ 3v. Therefore, n ≤ u + 1

3u2 + 1. This takes the value
2002 when u = 76. However, when (x, y, z) = (26, 26, 25), then u = 77, v = 1976 and n = 2044. Therefore,
we need at least 77 lines, but a suitably chosen set of 77 lines will suffice.

683. Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) for
which

f(x)f(x + 1) = g(h(x)) ,

Solution 1. [A. Remorov] Let f(x) = a(x− r)(x− s). Then

f(x)f(x + 1) = a2(x− r)(x− s + 1)(x− r + 1)(x− s)

= a2(x2 + x− rx− sx + rs− r)(x2 + x− rx− sx + rs− s)

= a2[(x2 − (r + s− 1)x + rs)− r][(x2 − (r + s− 1)x + rs)− s]
= g(h(x)) ,

where g(x) = a2(x− r)(x− s) = af(x) and h(x) = x2 − (r + s− 1)x + rs.

Solution 2. Let f(x) = ax2 + bx + c, g(x) = px2 + qx + r and h(x) = ux2 + vx + w. Then

f(x)f(x + 1) = a2x4 + 2a(a + b)x3 + (a2 + b2 + 3ab + 2ac)x2 + (b + 2c)(a + b)x + c(a + b− c)

g(h(x)) = p(ux2 + vx + w)2 + q(ux + vx + w) + r

= pu2x4 + 2puvx3 + (2puw + pv2 + qu)x2 + (2pvw + qv)x + (pw2 + qw + r) .

Equating coefficients, we find that pu2 = a2, puv = a(a + b), 2puw + pv2 + qu = a2 + b2 + 3ab + 2ac,
(b + 2c)(a + b) = (2pw + q)v and c(a + b + c) = pw2 + qw + r. We need to find just one solution of this

7



system. Let p = 1 and u = a. Then v = a + b and b + 2c = 2pw + q from the second and fourth equations.
This yields the third equation automatically. Let q = b and w = c. Then from the fifth equation, we find
that r = ac.

Thus, when f(x) = ax2 + bx + c, we can take g(x) = x2 + bx + ac and h(x) = ax2 + (a + b)x + c.

Solution 3. [S. Wang] Suppose that

f(x) = a(x + h)2 + k = a(t− (1/2))2 + k ,

where t = x + h + 1
2 . Then f(x + 1) = a(x + 1 + h)2 + k = a(t + (1/2))2 + k, so that

f(x)f(x + 1) = a2(t2 − (1/4))2 + 2ak(t2 + (1/4)) + k2

= a2t4 +
(
− a2

2
+ 2ak

)
t2 +

(
a2

16
+

ak

2
+ k2

)
.

Thus, we can achieve the desired representation with h(x) = t2 = x2 + (2h + 1)x + 1
4 and g(x) = a2x2 +

(−a2

2 + 2ak)x + (a2

16 + ak
2 + k2).

Solution 4. [V. Krakovna] Let f(x) = ax2 + bx + c = au(x) where u(x) = x2 + dx + e, where b = ad
and c = ae. If we can find functions v(x) and w(x) for which u(x)u(x + 1) = v(w(x)), then f(x)f(x + 1) =
a2v(w(x)), and we can take h(x) = w(x) and g(x) = a2v(x).

Define p(t) = u(x + t), so that p(t) is a monic quadratic in t. Then, noting that p′′(t) = u′′(x + t) = 2,
we have that

p(t) = u(x + t) = u(x) + u′(x)t +
u′′(x)

2
t2 = t2 + u′(x)t + u(x) ,

from which we find that

u(x)u(x + 1) = p(0)p(1) = u(x)[u(x) + u′(x) + 1]

= u(x)2 + u′(x)u(x) + u(x) = p(u(x)) = u(x + u(x)) .

Thus, u(x)u(x + 1) = v(w(x)) where w(x) = x + u(x) and v(x) = u(x). Therefore, we get the desired
representation with

h(x) = x + u(x) = x2 +
(

1 +
b

a

)
x +

c

a

and
g(x) = a2v(x) = a2u(x) = af(x) = a2x2 + abx + ac .

Solution 5. [Generalization by J. Rickards.] The following statement is true: Let the quartic polynomial
f(x) have roots r1, r2, r3, r4 (not necessarily distinct). Then f(x) can be expressed in the form g(h(x) for
quadratic polynomials g(x) and h(x) if and only if the sum of two of r1, r2, r3, r4 is equal to the sum of the
other two.

Wolog, suppose that r1 + r2 = r3 + r4. Let the leading coefficient of f(x) be a. Define h(x) =
(x− r1)(x− r2) and g(x) = a(x− r2

3 + r1r3 + r2r3 − r1r2). Then

g(h(x) = a(x− r1)(x− r2)[(x− r1)(x− r2)− r2
3 + r1r − 3 + r2r3 − r1r2

= a(x− r1)(x− r2)[x2 − (r1 + r2)x− r2
3 + r1r3 + r2r3)

= a(x− r1)(x− r2)[x2 − (r3 + r − 4)x + r3(r1 + r2 − r3)]

= a(x− r1)(x− r2)(x2 − (r − 3 + r4)x + r − 3r4

= a(x− r1)(x− r2)(x− r3)(x− r4)

as required.
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Conversely, assume that we are given quadratic polynomials g(x) = b(x− r5)(x− r6) and h(x) and that
c is the leading coefficient of h(x). Let f(x) = g(h(x)).

Suppose that
h(x)− r5 = c(x− r1)(x− r2)

and that
h(x)− r6 = c(x− r3)(x− r4) .

Then
f(x) = g(h(x)) = bc2(x− r1)(x− r2)(x− r3)(x− r4) .

We have that

h(x) = c(x− r1)(x− r2) + r5 = cx62− c(r1 + r2)x + cr1r2 + r5

and
h(x) = c9x− r3)(x− r4) + r6 = cx2 − c(r3 + r4)x + cr3r4 + r6 ,

whereupon it follows that r1 + r2 = r3 + r4 and the desired result follows.

Comment. The second solution can also be obtained by looking at special cases, such as when a = 1 or
b = 0, getting the answer and then making a conjecture.
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