Solutions For May

675. $A B C$ is a triangle with circumcentre O such that $\angle A$ exceeds 90° and $A B<A C$. Let M and N be the midpoints of $B C$ and $A O$, and let D be the intersection of $M N$ and $A C$. Suppose that $A D=$ $\frac{1}{2}(A B+A C)$. Determine $\angle A$.

Solution. Assign coordinates: $A \sim(0,0), B \sim(2 \cos \theta, 2 \sin \theta), C \sim(2 u, 0)$ where $90^{\circ}<\theta<180^{\circ}$ and $u>1$. First, we determine O as the intersection of the right bisectors of $A B$ and $A C$. The centre of $A B$ has coordinates $(\cos \theta, \sin \theta)$ and its right bisector has equation

$$
(\cos \theta) x+(\sin \theta) y=1
$$

The centre of segment $A C$ has coordinates $(u, 0)$ and its right bisector has equation $x=u$. Hence, we find that

$$
\begin{aligned}
& O \sim\left(u, \frac{1-u \cos \theta}{\sin \theta}\right) \\
& N \sim\left(\frac{1}{2} u, \frac{1-u \cos \theta}{2 \sin \theta}\right) \\
& M \sim(u+\cos \theta, \sin \theta)
\end{aligned}
$$

and

$$
D \sim(u+1,0)
$$

The slope of $M D$ is $(\sin \theta) /(\cos \theta-1)$. The slope of $N D$ is $(u \cos \theta-1) /((u+2) \sin \theta)$. Equating these two leads to the equation

$$
u\left(\cos ^{2} \theta-\sin ^{2} \theta-\cos \theta\right)=2 \sin ^{2} \theta+\cos \theta-1
$$

which reduces to

$$
(u+1)\left(2 \cos ^{2} \theta-\cos \theta-1\right)=0
$$

Since $u+1>0$, we have that $0=2 \cos ^{2} \theta-\cos \theta-1=(2 \cos \theta+1)(\cos \theta-1)$. Hence $\cos \theta=-1 / 2$ and so $\angle A=120^{\circ}$.
676. Determine all functions f from the set of reals to the set of reals which satisfy the functional equation

$$
(x-y) f(x+y)-(x+y) f(x-y)=4 x y\left(x^{2}-y^{2}\right)
$$

for all real x and y.
Solution. Let u and v be any pair of real numbers. We can solve $x+y=u$ and $x-y=v$ to obtain

$$
(x, y)=\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right)
$$

From the functional equation, we find that $v f(u)-u f(v)=\left(u^{2}-v^{2}\right) u v$, whence

$$
\frac{f(u)}{u}-u^{2}=\frac{f(v)}{v}-v^{2}
$$

Thus $(f(x) / x)-x^{2}$ must be some constant a, so that $f(x)=x^{3}+a x$. This checks out for any constant a.
677. For vectors in three-dimensional real space, establish the identity

$$
[\mathbf{a} \times(\mathbf{b}-\mathbf{c})]^{2}+[\mathbf{b} \times(\mathbf{c}-\mathbf{a})]^{2}+[\mathbf{c} \times(\mathbf{a}-\mathbf{b})]^{2}=(\mathbf{b} \times \mathbf{c})^{2}+(\mathbf{c} \times \mathbf{a})^{2}+(\mathbf{a} \times \mathbf{b})^{2}+(\mathbf{b} \times \mathbf{c}+\mathbf{c} \times \mathbf{a}+\mathbf{a} \times \mathbf{b})^{2} .
$$

Solution 1. Let $\mathbf{u}=\mathbf{b} \times \mathbf{c}, \mathbf{v}=\mathbf{c} \times \mathbf{a}$ and $\mathbf{w}=\mathbf{a} \times \mathbf{b}$. Then, for example, $\mathbf{a} \times(\mathbf{b}-\mathbf{c})=\mathbf{a} \times \mathbf{b}-\mathbf{a} \times \mathbf{c}=$ $\mathbf{a} \times \mathbf{b}+\mathbf{c} \times \mathbf{a}=\mathbf{v}+\mathbf{w}$. The left side is equal to
$(\mathbf{v}+\mathbf{w}) \cdot(\mathbf{v}+\mathbf{w})+(\mathbf{u}+\mathbf{w}) \cdot(\mathbf{u}+\mathbf{w})+(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=2[(\mathbf{u} \cdot \mathbf{u})+(\mathbf{v} \cdot \mathbf{v})+(\mathbf{w} \cdot \mathbf{w})+(\mathbf{u} \cdot \mathbf{v})+(\mathbf{v} \cdot \mathbf{w})+(\mathbf{w} \cdot \mathbf{u})]$
while the right side is equal to

$$
(\mathbf{u} \cdot \mathbf{u})+(\mathbf{v} \cdot \mathbf{v})+(\mathbf{w} \cdot \mathbf{w})+(\mathbf{u}+\mathbf{v}+\mathbf{w})^{2}
$$

which expands to the final expression for the left side.
Solution 2. For vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$, we have the identities

$$
(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u}
$$

and

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}
$$

Using these, we find for example that

$$
\begin{aligned}
{[\mathbf{a} \times(\mathbf{b}-\mathbf{c})] \cdot[\mathbf{a} \times(\mathbf{b}-\mathbf{c})] } & =[\mathbf{a} \times(\mathbf{b}-\mathbf{c}) \times \mathbf{a}] \cdot(\mathbf{b}-\mathbf{c}) \\
& =\{(\mathbf{a} \cdot \mathbf{a})(\mathbf{b}-\mathbf{c})-[(\mathbf{b}-\mathbf{c}) \cdot \mathbf{a}] \mathbf{a}\} \cdot(\mathbf{b}-\mathbf{c}) \\
& =|\mathbf{a}|^{2}\left[|\mathbf{b}|^{2}+|\mathbf{c}|^{2}-2(\mathbf{b} \cdot \mathbf{c})\right]-\left[(\mathbf{b} \cdot \mathbf{a}-\mathbf{c} \cdot \mathbf{a}]^{2}\right. \\
& =|\mathbf{a}|^{2}\left[|\mathbf{b}|^{2}+|\mathbf{c}|^{2}-2(\mathbf{b} \cdot \mathbf{c})\right]-(\mathbf{b} \cdot \mathbf{a})^{2}-(\mathbf{c} \cdot \mathbf{a})^{2}+2(\mathbf{b} \cdot \mathbf{a})(\mathbf{c} \cdot \mathbf{a})
\end{aligned}
$$

Also

$$
\begin{aligned}
(\mathbf{b} \times \mathbf{c}) \cdot(\mathbf{b} \times \mathbf{c}) & =[(\mathbf{b} \cdot \mathbf{b}) \mathbf{c}-(\mathbf{c} \cdot \mathbf{b}) \mathbf{b}] \cdot \mathbf{c} \\
& =|\mathbf{b}|^{2}|\mathbf{c}|^{2}-(\mathbf{c} \cdot \mathbf{b})^{2}
\end{aligned}
$$

and

$$
(\mathbf{b} \times \mathbf{c}) \cdot(\mathbf{c} \times \mathbf{a})=[(\mathbf{b} \times \mathbf{c}) \times \mathbf{c}] \cdot \mathbf{a}=(\mathbf{b} \cdot \mathbf{c})(\mathbf{c} \cdot \mathbf{a})-(\mathbf{c} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{a}) .
$$

From these the identity can be checked.
678. For $a, b, c>0$, prove that

$$
\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)} \geq \frac{3}{1+a b c} .
$$

Solution 1. It is easy to verify the following identity

$$
\frac{1}{a(1+b)}+\frac{1}{1+a b c}=\frac{1}{1+a b c}\left(\frac{1+a}{a(1+b)}+\frac{b(1+c)}{1+b}\right) .
$$

This and its analogues imply that

$$
\begin{gathered}
\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)}+\frac{3}{1+a b c}= \\
\frac{1}{1+a b c}\left(\frac{1+a}{a(1+b)}+\frac{b(1+c)}{1+b}+\frac{1+b}{b(1+c)}+\frac{c(1+a)}{1+c}+\frac{1+c}{c(1+a)}+\frac{a(1+b)}{1+a}\right) .
\end{gathered}
$$

The arithmetic-geometric means inequality yields

$$
\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)}+\frac{3}{1+a b c} \geq 6 \times \frac{1}{1+a b c} .
$$

Miraculously, subtracting $3 /(1+a b c)$ from both sides yields the required inequality. \odot

Solution 2. Multiplying the desired inequality by $(1+a b c) a(b+1) b(c+1) c(a+1)$, after some manipulation, produces the equivalent inequality:

$$
\begin{aligned}
a b c\left(b c^{2}+c a^{2}+a b^{2}\right) & +(b c+c a+a b)+(a b c)^{2}(a+b+c)+\left(b c^{2}+c a^{2}+a b^{2}\right) \\
& \geq 2 a b c(a+b+c)+2 a b c(b c+c a+a b)
\end{aligned}
$$

Pairing off the terms of the left side and applying the arithemetic-geometric means inequality, we get

$$
\begin{aligned}
&\left(a^{2} b^{3} c+b c\right)+\left(a b^{2} c^{3}+a c\right)+\left(a^{3} b c^{2}\right. \\
&+a b)+\left(a^{3} b^{2} c^{2}+a b^{2}\right) \\
&+\left(a^{2} b^{3} c^{2}+b c^{2}\right)+\left(a^{2} b^{2} c^{3}+c a^{2}\right) \\
& \geq 2 a b^{2} c+2 a b c^{2}+2 a^{2} b c+2 a^{2} b^{2} c+2 a b^{2} c^{2}+2 a^{2} b c^{2} \\
&=2 a b c(a+b+c)+2 a b c(a b+b c+c a)
\end{aligned}
$$

as required.
Solution 3. [C. Deng] Taking the difference between the two sides yields, where the summation is a cyclic one,

$$
\begin{aligned}
\sum\left(\frac{1}{a(b+1)}-\frac{1}{1+a b c}\right) & =\sum \frac{1+a b c-a(b+1)}{a(b+1)(1+a b c)} \\
& =\frac{1}{1+a b c} \sum\left(\frac{b}{b+1}(c-1)-\frac{1}{a(b+1)}(a-1)\right) \\
& =\frac{1}{1+a b c} \sum\left(\frac{c}{c+1}(a-1)-\frac{1}{a(b+1)}(a-1)\right) \\
& =\frac{1}{1+a b c} \sum(a-1)\left(\frac{c}{c+1}-\frac{1}{a(b+1)}\right) \\
& =\frac{1}{1+a b c} \sum\left(\frac{a^{2}-1}{a}\right)\left(\frac{a b c+a c-c-1}{(a+1)(b+1)(c+1)}\right) \\
& =\frac{1}{(1+a b c)(1+a)(1+b)(1+c)} \sum\left(a^{2} b c+a^{2} c+\frac{c}{a}+\frac{1}{a}-a c-a-b c-c\right) \\
& =\frac{1}{(1+a b c)(1+a)(1+b)(1+c)} \sum\left(a^{2} b c+a^{2} c-2 a b-2 a+\frac{b}{c}+\frac{1}{c}\right) \\
& =\frac{1}{(1+a b c)(1+a)(1+b)(1+c)} \sum \frac{b+1}{c}\left(a^{2} c^{2}-2 a c+1\right) \\
& =\frac{1}{(1+a b c)(1+a)(1+b)(1+c)} \sum \frac{b+1}{c}(a c-1)^{2} \geq 0
\end{aligned}
$$

as desired.
Solution 4. [S. Seraj] Using the Arithmetic-Geometric Means Inequality, we obtain $a^{2} c+a^{2} b^{2} c^{3} \geq 2 a^{2} b c^{2}$ and $a b+a^{3} b c^{2} \geq 2 a^{2} b c$ and the two cyclic variants of each. Adding the six inequalities yields that

$$
\begin{aligned}
a^{2} c+a^{2} b^{2} c^{3} & +a b^{2}+a^{3} b^{2} c^{2}+b c^{2}+a^{2} b^{3} c^{2}+a b+a^{3} b c^{2}+b c+a^{2} b^{3} c+a c+a b^{2} c^{3} \\
& \geq 2 a^{2} b c^{2}+2 a^{2} b^{2} c+2 a b^{2} c^{2}+2 a^{2} b c+2 a b^{2} c+2 a b c^{2}
\end{aligned}
$$

Adding the same terms to both sides of the equations, and then factoring the two sides leads to

$$
\begin{aligned}
& (1+a b c)\left(3 a b c+a^{2} b c+a b^{2} c+a b c^{2}+a^{2} c+a b^{2}+b c^{2}+a b+b c+c a\right) \\
& \quad \geq 3 a b c(a b c+a c+b c+a b+a+b+c+1)=3 a b c(a+1)(b+1)(c+1)
\end{aligned}
$$

Carrying out some divisions and strategically grouping terms in the numerator yields that

$$
\frac{\left(a b c^{2}+b c^{2}+a b c+b c\right)+\left(a^{2} b c+a^{2} c+a b c+a c\right)+\left(a b^{2} c+a b^{2}+a b c+a b\right)}{a b c(a+1)(b+1)(c+1)} \geq \frac{3}{1+a b c} .
$$

Factoring each bracket and simplifying leads to the desired inequality.
679. Let F_{1} and F_{2} be the foci of an ellipse and P be a point in the plane of the ellipse. Suppose that G_{1} and G_{2} are points on the ellipse for which $P G_{1}$ and $P G_{2}$ are tangents to the ellipse. Prove that $\angle F_{1} P G_{1}=\angle F_{2} P G_{2}$.

Solution. Let H_{1} be the reflection of F_{1} in the tangent $P G_{1}$, and H_{2} be the reflection of F_{2} in the tangent $P G_{2}$. We have that $P H_{1}=P F_{1}$ and $P F_{2}=P H_{2}$. By the reflection property, $\angle P G_{1} F_{2}=\angle F_{1} G_{1} Q=$ $\angle H_{1} G_{1} Q$, where Q is a point on $P G_{1}$ produced. Therefore, $H_{1} F_{2}$ intersects the ellipse in G_{1}. Similarly, $H_{2} F_{1}$ intersects the ellipse in K_{2}. Therefore

$$
\begin{aligned}
H_{1} F_{2} & =H_{1} G_{1}+G_{1} F_{2}=F_{1} G_{1}+G_{1} F_{2} \\
& =F_{1} G_{2}+G_{2} F_{2}=F_{1} G_{2}+G_{2} H_{2}=H_{2} F_{1} .
\end{aligned}
$$

Therefore, triangle $P H_{1} F_{2}$ and $P F_{1} H_{2}$ are congruent (SSS), so that $\angle H_{1} P F_{2}=\angle H_{2} P F_{1}$. It follows that

$$
2 \angle F_{1} P G_{1}=\angle H_{1} P F_{1}=\angle H_{2} P F_{2}=2 \angle F_{2} P G_{2}
$$

and the desired result follows.
680. Let $u_{0}=1, u_{1}=2$ and $u_{n+1}=2 u_{n}+u_{n-1}$ for $n \geq 1$. Prove that, for every nonnegative integer n,

$$
u_{n}=\sum\left\{\frac{(i+j+k)!}{i!j!k!}: i, j, k \geq 0, i+j+2 k=n\right\}
$$

Solution 1. Suppose that we have a supply of white and of blue coaches, each of length 1 , and of red coaches, each of length 2 ; the coaches of each colour are indistinguishable. Let v_{n} be the number of trains of total length n that can be made up of red, white and blue coaches of total length n. Then $v_{0}=1, v_{1}=2$ and $v_{2}=5(\mathrm{R}, \mathrm{WW}, \mathrm{WB}, \mathrm{BW}, \mathrm{BB})$. In general, for $n \geq 1$, we can get a train of length $n+1$ by appending either a white or a blue coach to a train of length n or a red coach to a train of length $n-1$, so that $v_{n+1}=2 v_{n}+v_{n-1}$. Therefore $v_{n}=u_{n}$ for $n \geq 0$.

We can count v_{n} in another way. Suppose that the train consists of i white coaches, j blue coaches and k red coaches, so that $i+j+2 k=n$. There are $(i+j+k)$! ways of arranging the coaches in order; any permutation of the i white coaches among themselves, the j blue coaches among themselves and k red coaches among themselves does not change the train. Therefore

$$
u_{n}=\sum\left\{\frac{(i+j+k)!}{i!j!k!}: i, j, k \geq 0, i+j+2 k=n\right\}
$$

Solution 2. Let $f(t)=\sum_{n=0}^{\infty} u_{n} t^{n}$. Then

$$
\begin{aligned}
f(t) & =u_{0}+u_{1} t+\left(2 u_{1}+u_{0}\right) t^{2}+\left(2 u_{2}+u_{1}\right) t^{3}+\cdots \\
& =u_{0}+u_{1} t+2 t\left(f(t)-u_{0}\right)+t^{2} f(t)=u_{0}+\left(u_{1}-2 u_{0}\right) t+\left(2 t+t^{2}\right) f(t)
\end{aligned}
$$

$$
=1+\left(2 t+t^{2}\right) f(t)
$$

whence

$$
\begin{aligned}
f(t) & =\frac{1}{1-2 t-t^{2}}=\frac{1}{1-t-t-t^{2}} \\
& =\sum_{n=0}^{\infty}\left(t+t+t^{2}\right)^{n}=\sum_{n=0}^{\infty} t^{n}\left[\sum\left\{\frac{(i+j+k)!}{i!j!k!}: i, j, k \geq 0, i+j+2 k=n\right\}\right]
\end{aligned}
$$

Solution 3. Let w_{n} be the sum in the problem. It is straightforward to check that $u_{0}=w_{0}$ and $u_{1}=w_{1}$. We show that, for $n \geq 1, w_{n+1}=2 w_{n}+w_{n-1}$ from which it follows by induction that $u_{n}=w_{n}$ for each n. By convention, let $(-1)!=\infty$. Then, for $i, j, k \geq 0$ and $i+j+2 k=n+1$, we have that

$$
\begin{aligned}
\frac{(i+j+k)!}{i!j!k!} & =\frac{(i+j+k)(i+j+k-1)!}{i!j!k!} \\
& =\frac{(i+j+k-1)!}{(i-1)!j!k!}+\frac{(i+j+k-1)!}{i!(j-1)!k!}+\frac{(i+j+k-1)!}{i!j!(k-1)!}
\end{aligned}
$$

whence

$$
\begin{aligned}
w_{n+1}= & \left.\sum \frac{(i+j+k-1)!}{(i-1)!j!k!}: i, j, k \geq 0,(i-1)+j+2 k=n\right\} \\
& +\sum\left\{\frac{(i+j+k-1)!}{i!(j-1)!k!}: i, j, k \geq 0, i+(j-1)+2 k=n\right\} \\
& +\sum\left\{\frac{(i+j+k-1)!}{i!j!(k-1)!}: i, j, k \geq 0, i+j+2(k-1)=n-1\right\} \\
= & w_{n}+w_{n}+w_{n-1}=2 w_{n}+w_{n-1}
\end{aligned}
$$

as desired.
681. Let \mathbf{a} and \mathbf{b}, the latter nonzero, be vectors in \mathbf{R}^{3}. Determine the value of λ for which the vector equation

$$
\mathbf{a}-(\mathbf{x} \times \mathbf{b})=\lambda \mathbf{b}
$$

is solvable, and then solve it.
Solution 1. If there is a solution, we must have $\mathbf{a} \cdot \mathbf{b}=\lambda|\mathbf{b}|^{2}$, so that $\lambda=(\mathbf{a} \cdot \mathbf{b}) /|\mathbf{b}|^{2}$. On the other hand, suppose that λ has this value. Then

$$
\begin{aligned}
\mathbf{0} & =\mathbf{b} \times \mathbf{a}-\mathbf{b} \times(\mathbf{x} \times \mathbf{b}) \\
& =\mathbf{b} \times \mathbf{a}-[(\mathbf{b} \cdot \mathbf{b}) \mathbf{x}-(\mathbf{b} \cdot \mathbf{x}) \mathbf{b}]
\end{aligned}
$$

so that

$$
\mathbf{b} \times \mathbf{a}=|\mathbf{b}|^{2} \mathbf{x}-(\mathbf{b} \cdot \mathbf{x}) \mathbf{b}
$$

A particular solution of this equation is

$$
\mathbf{x}=\mathbf{u} \equiv \frac{\mathbf{b} \times \mathbf{a}}{|\mathbf{b}|^{2}}
$$

Let $\mathbf{x}=\mathbf{z}$ be any other solution. Then

$$
\begin{aligned}
|\mathbf{b}|^{2}(\mathbf{z}-\mathbf{u}) & =|\mathbf{b}|^{2} \mathbf{z}-|\mathbf{b}|^{2} \mathbf{u} \\
& =(\mathbf{b} \times \mathbf{a}+(\mathbf{b} \cdot \mathbf{z}) \mathbf{b})-(\mathbf{b} \times \mathbf{a}+(\mathbf{b} \cdot \mathbf{u}) \mathbf{b}) \\
& =(\mathbf{b} \cdot \mathbf{z}) \mathbf{b}
\end{aligned}
$$

so that $\mathbf{z}-\mathbf{u}=\mu \mathbf{b}$ for some scalar μ.
We check when this works. Let $\mathbf{x}=\mathbf{u}+\mu \mathbf{b}$ for some scalar μ. Then

$$
\begin{aligned}
\mathbf{a}-(\mathbf{x} \times \mathbf{b}) & =\mathbf{a}-(\mathbf{u} \times \mathbf{b})=\mathbf{a}-\frac{(\mathbf{b} \times \mathbf{a}) \times \mathbf{b}}{|\mathbf{b}|^{2}} \\
& =\mathbf{a}+\frac{\mathbf{b} \times(\mathbf{b} \times \mathbf{a})}{|\mathbf{b}|^{2}} \\
& =\mathbf{a}+\frac{(\mathbf{b} \cdot \mathbf{a}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{b}) \mathbf{a}}{|\mathbf{b}|^{2}} \\
& =\mathbf{a}+\left(\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{b}|^{2}}\right) \mathbf{b}-\mathbf{a}=\lambda \mathbf{b}
\end{aligned}
$$

as desired. Hence, the solutions is

$$
\mathbf{x}=\frac{\mathbf{b} \times \mathbf{a}}{|\mathbf{b}|^{2}}+\mu \mathbf{b}
$$

where μ is an arbitrary scalar.
Solution 2. [B. Yahagni] Suppose, to begin with, that $\{\mathbf{a}, \mathbf{b}\}$ is linearly dependent. Then $\mathbf{a}=[(\mathbf{a}$. $\left.\mathbf{b}) /|\mathbf{b}|^{2}\right] \mathbf{b}$. Since $(\mathbf{x} \times \mathbf{b}) \cdot \mathbf{b}=0$ for all \mathbf{x}, the equation has no solutions except when $\lambda=(\mathbf{a} \cdot \mathbf{b}) /|\mathbf{b}|^{2}$. In this case, it becomes $\mathbf{x} \times \mathbf{b}=\mathbf{0}$ and is satisfied by $\mathbf{x}=\mu \mathbf{b}$, where μ is any scalar.

Otherwise, $\{\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}\}$ is linearly independent and constitutes a basis for \mathbb{R}^{3}. Let a solution be

$$
\mathbf{x}=\alpha \mathbf{a}+\mu \mathbf{b}+\beta(\mathbf{a} \times \mathbf{b})
$$

Then

$$
\mathbf{x} \times \mathbf{b}=\alpha(\mathbf{a} \times \mathbf{b})+\beta[(\mathbf{a} \times \mathbf{b}) \times \mathbf{b}]=\alpha(\mathbf{a} \times \mathbf{b})+\beta(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}-\beta(\mathbf{b} \cdot \mathbf{b}) \mathbf{a}
$$

and the equation becomes

$$
\left(1+\beta|\mathbf{b}|^{2}\right) \mathbf{a}-\beta(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}-\alpha(\mathbf{a} \times \mathbf{b})=\lambda \mathbf{b}
$$

Therefore $\alpha=0, \mu$ is arbitrary, $\beta=-1 /|\mathbf{b}|^{2}$ and $\lambda=-\beta(\mathbf{a} \cdot \mathbf{b})=(\mathbf{a} \cdot \mathbf{b}) /|\mathbf{b}|^{2}$.
Therefore, the existence of a solution requires that $\lambda=(\mathbf{a} \cdot \mathbf{b}) /|\mathbf{b}|^{2}$ and the solution then is

$$
\mathbf{x}=\mu \mathbf{b}-\frac{1}{|\mathbf{b}|^{2}}(\mathbf{a} \times \mathbf{b})
$$

Solution 3. Writing the equation in vector components yields the system

$$
\begin{gathered}
b_{3} x_{2}-b_{2} x_{3}=a_{1}-\lambda b_{1} \\
-b_{3} x_{1}+b_{1} x_{3}=a_{2}-\lambda b_{2} \\
b_{2} x_{1}-b_{1} x_{2}=a_{3}-\lambda b_{3}
\end{gathered}
$$

The matrix of coefficients of the left side is of rank 2, so that the corresponding homogeneous system of equations has a single infinity of solutions. Multiplying the three equations by b_{1}, b_{2} and b_{3} respectively and adding yields

$$
0=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}-\lambda\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)
$$

Thus, for a solution to exist, we require that

$$
\lambda=\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\left.b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)} .
$$

In addition, we learn that the corresponding homogeneous system is satisfied by

$$
\left(x_{1}, x_{2}, x_{3}\right)=\mu\left(b_{1}, b_{2}, b_{3}\right)
$$

where μ is an arbitrary scalar.
It remains to find a particular solution for the nonhomogeneous system. Multiplying the third equation by b_{2} and subtracting the second multiplied by b_{3}, we obtain that

$$
\left(b_{2}^{2}+b_{3}^{2}\right) x_{1}=b_{1}\left(b_{2} x_{2}+b_{3} x_{3}\right)+\left(a_{3} b_{2}-a_{2} b_{3}\right)
$$

Therefore, setting $b_{1}^{2}+b_{2}^{2}+b_{3}^{2}=b^{2}$, we have that

$$
b^{2} x_{1}=b_{1}\left(b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\right)+\left(a_{3} b_{2}-a_{2} b_{3}\right)
$$

Similarly

$$
\begin{aligned}
& b^{2} x_{2}=b_{2}\left(b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\right)+\left(a_{1} b_{3}-a_{3} b_{1}\right) \\
& b^{2} x_{3}=b_{3}\left(b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\right)+\left(a_{2} b_{1}-a_{1} b_{2}\right)
\end{aligned}
$$

Observing that $b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}$ vanishes when

$$
\left(x_{1}, x_{2}, x_{3}\right)=\left(a_{3} b_{2}-a_{2} b_{3}, a_{1} b_{3}-a_{3} b_{1}, a_{2} b_{1}-a_{1} b_{2}\right)
$$

we obtain a particular solution to the system:

$$
\left(x_{1}, x_{2}, x_{3}\right)=b^{-2}\left(a_{3} b_{2}-a_{2} b_{3}, a_{1} b_{3}-a_{3} b_{1}, a_{2} b_{1}-a_{1} b_{2}\right)
$$

Adding to this the general solution of the homogeneous system yields the solution of the nonhomogeneous system.
682. The plane is partitioned into n regions by three families of parallel lines. What is the least number of lines to ensure that $n \geq 2010$?

Solution. Suppose that there are x, y and z lines in the three families. Assume that no point is common to three distinct lines. The $x+y$ lines of the first two families partition the plane into $(x+1)(y+1)$ regions. Let λ be one of the lines of the third family. It is cut into $x+y+1$ parts by the lines in the first two families, so the number of regions is increased by $x+y+1$. Since this happens z times, the number of regions that the plane is partitioned into by the three families of

$$
n=(x+1)(y+1)+z(x+y+1)=(x+y+z)+(x y+y z+z x)+1
$$

Let $u=x+y+z$ and $v=x y+y z+z x$. Then (by the Cauchy-Schwarz Inequality for example), $v \leq x^{2}+y^{2}+z^{2}$, so that $u^{2}=x^{2}+y^{2}+z^{2}+2 v \geq 3 v$. Therefore, $n \leq u+\frac{1}{3} u^{2}+1$. This takes the value 2002 when $u=76$. However, when $(x, y, z)=(26,26,25)$, then $u=77, v=1976$ and $n=2044$. Therefore, we need at least 77 lines, but a suitably chosen set of 77 lines will suffice.
683. Let $f(x)$ be a quadratic polynomial. Prove that there exist quadratic polynomials $g(x)$ and $h(x)$ for which

$$
f(x) f(x+1)=g(h(x))
$$

Solution 1. [A. Remorov] Let $f(x)=a(x-r)(x-s)$. Then

$$
\begin{aligned}
f(x) f(x+1) & =a^{2}(x-r)(x-s+1)(x-r+1)(x-s) \\
& =a^{2}\left(x^{2}+x-r x-s x+r s-r\right)\left(x^{2}+x-r x-s x+r s-s\right) \\
& =a^{2}\left[\left(x^{2}-(r+s-1) x+r s\right)-r\right]\left[\left(x^{2}-(r+s-1) x+r s\right)-s\right] \\
& =g(h(x))
\end{aligned}
$$

where $g(x)=a^{2}(x-r)(x-s)=a f(x)$ and $h(x)=x^{2}-(r+s-1) x+r s$.
Solution 2. Let $f(x)=a x^{2}+b x+c, g(x)=p x^{2}+q x+r$ and $h(x)=u x^{2}+v x+w$. Then

$$
\begin{aligned}
f(x) f(x+1) & =a^{2} x^{4}+2 a(a+b) x^{3}+\left(a^{2}+b^{2}+3 a b+2 a c\right) x^{2}+(b+2 c)(a+b) x+c(a+b-c) \\
g(h(x)) & =p\left(u x^{2}+v x+w\right)^{2}+q(u x+v x+w)+r \\
& =p u^{2} x^{4}+2 p u v x^{3}+\left(2 p u w+p v^{2}+q u\right) x^{2}+(2 p v w+q v) x+\left(p w^{2}+q w+r\right) .
\end{aligned}
$$

Equating coefficients, we find that $p u^{2}=a^{2}$, $p u v=a(a+b), 2 p u w+p v^{2}+q u=a^{2}+b^{2}+3 a b+2 a c$, $(b+2 c)(a+b)=(2 p w+q) v$ and $c(a+b+c)=p w^{2}+q w+r$. We need to find just one solution of this
system. Let $p=1$ and $u=a$. Then $v=a+b$ and $b+2 c=2 p w+q$ from the second and fourth equations. This yields the third equation automatically. Let $q=b$ and $w=c$. Then from the fifth equation, we find that $r=a c$.

Thus, when $f(x)=a x^{2}+b x+c$, we can take $g(x)=x^{2}+b x+a c$ and $h(x)=a x^{2}+(a+b) x+c$.
Solution 3. [S. Wang] Suppose that

$$
f(x)=a(x+h)^{2}+k=a(t-(1 / 2))^{2}+k
$$

where $t=x+h+\frac{1}{2}$. Then $f(x+1)=a(x+1+h)^{2}+k=a(t+(1 / 2))^{2}+k$, so that

$$
\begin{aligned}
f(x) f(x+1) & =a^{2}\left(t^{2}-(1 / 4)\right)^{2}+2 a k\left(t^{2}+(1 / 4)\right)+k^{2} \\
& =a^{2} t^{4}+\left(-\frac{a^{2}}{2}+2 a k\right) t^{2}+\left(\frac{a^{2}}{16}+\frac{a k}{2}+k^{2}\right)
\end{aligned}
$$

Thus, we can achieve the desired representation with $h(x)=t^{2}=x^{2}+(2 h+1) x+\frac{1}{4}$ and $g(x)=a^{2} x^{2}+$ $\left(\frac{-a^{2}}{2}+2 a k\right) x+\left(\frac{a^{2}}{16}+\frac{a k}{2}+k^{2}\right)$.

Solution 4. [V. Krakovna] Let $f(x)=a x^{2}+b x+c=a u(x)$ where $u(x)=x^{2}+d x+e$, where $b=a d$ and $c=a e$. If we can find functions $v(x)$ and $w(x)$ for which $u(x) u(x+1)=v(w(x))$, then $f(x) f(x+1)=$ $a^{2} v(w(x))$, and we can take $h(x)=w(x)$ and $g(x)=a^{2} v(x)$.

Define $p(t)=u(x+t)$, so that $p(t)$ is a monic quadratic in t. Then, noting that $p^{\prime \prime}(t)=u^{\prime \prime}(x+t)=2$, we have that

$$
p(t)=u(x+t)=u(x)+u^{\prime}(x) t+\frac{u^{\prime \prime}(x)}{2} t^{2}=t^{2}+u^{\prime}(x) t+u(x)
$$

from which we find that

$$
\begin{aligned}
u(x) u(x+1) & =p(0) p(1)=u(x)\left[u(x)+u^{\prime}(x)+1\right] \\
& =u(x)^{2}+u^{\prime}(x) u(x)+u(x)=p(u(x))=u(x+u(x))
\end{aligned}
$$

Thus, $u(x) u(x+1)=v(w(x))$ where $w(x)=x+u(x)$ and $v(x)=u(x)$. Therefore, we get the desired representation with

$$
h(x)=x+u(x)=x^{2}+\left(1+\frac{b}{a}\right) x+\frac{c}{a}
$$

and

$$
g(x)=a^{2} v(x)=a^{2} u(x)=a f(x)=a^{2} x^{2}+a b x+a c .
$$

Solution 5. [Generalization by J. Rickards.] The following statement is true: Let the quartic polynomial $f(x)$ have roots $r_{1}, r_{2}, r_{3}, r_{4}$ (not necessarily distinct). Then $f(x)$ can be expressed in the form $g(h(x)$ for quadratic polynomials $g(x)$ and $h(x)$ if and only if the sum of two of $r_{1}, r_{2}, r_{3}, r_{4}$ is equal to the sum of the other two.

Wolog, suppose that $r_{1}+r_{2}=r_{3}+r_{4}$. Let the leading coefficient of $f(x)$ be a. Define $h(x)=$ $\left(x-r_{1}\right)\left(x-r_{2}\right)$ and $g(x)=a\left(x-r_{3}^{2}+r_{1} r_{3}+r_{2} r_{3}-r_{1} r_{2}\right)$. Then

$$
\begin{aligned}
g(h(x) & =a\left(x-r_{1}\right)\left(x-r_{2}\right)\left[\left(x-r_{1}\right)\left(x-r_{2}\right)-r_{3}^{2}+r_{1} r-3+r_{2} r_{3}-r_{1} r_{2}\right. \\
& =a\left(x-r_{1}\right)\left(x-r_{2}\right)\left[x^{2}-\left(r_{1}+r_{2}\right) x-r_{3}^{2}+r_{1} r_{3}+r_{2} r_{3}\right) \\
& =a\left(x-r_{1}\right)\left(x-r_{2}\right)\left[x^{2}-\left(r_{3}+r-4\right) x+r_{3}\left(r_{1}+r_{2}-r_{3}\right)\right] \\
& =a\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x^{2}-\left(r-3+r_{4}\right) x+r-3 r_{4}\right. \\
& =a\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)\left(x-r_{4}\right)
\end{aligned}
$$

as required.

Conversely, assume that we are given quadratic polynomials $g(x)=b\left(x-r_{5}\right)\left(x-r_{6}\right)$ and $h(x)$ and that c is the leading coefficient of $h(x)$. Let $f(x)=g(h(x))$.

Suppose that

$$
h(x)-r_{5}=c\left(x-r_{1}\right)\left(x-r_{2}\right)
$$

and that

$$
h(x)-r_{6}=c\left(x-r_{3}\right)\left(x-r_{4}\right) .
$$

Then

$$
f(x)=g(h(x))=b c^{2}\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)\left(x-r_{4}\right) .
$$

We have that

$$
h(x)=c\left(x-r_{1}\right)\left(x-r_{2}\right)+r_{5}=c x 62-c\left(r_{1}+r_{2}\right) x+c r_{1} r_{2}+r_{5}
$$

and

$$
\left.h(x)=c 9 x-r_{3}\right)\left(x-r_{4}\right)+r_{6}=c x^{2}-c\left(r_{3}+r_{4}\right) x+c r_{3} r_{4}+r_{6}
$$

whereupon it follows that $r_{1}+r_{2}=r_{3}+r_{4}$ and the desired result follows.
Comment. The second solution can also be obtained by looking at special cases, such as when $a=1$ or $b=0$, getting the answer and then making a conjecture.

