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661. Let P be an arbitrary interior point of an equilateral triangle ABC. Prove that

|6 PAB − 6 PAC| ≥ |6 PBC − 6 PCB| .

662. Let n be a positive integer and x > 0. Prove that

(1 + x)n+1 ≥ (n + 1)n+1

nn
x .

663. Find all functions f : R −→ R such that

x2y2(f(x + y)− f(x)− f(y)) = 3(x + y)f(x)f(y)

for all real numbers x and y.

664. The real numbers x, y, and z satisfy the system of equations

x2− x = yz + 1;

y2− y = xz + 1;

z2− z = xy + 1.

Find all solutions (x, y, z) of the system and determine all possible values of xy + yz + zx + x + y + z
where (x, y, z) is a solution of the system.

665. Let f(x) = x3 + ax2 + bx + b. Determine all integer pairs (a, b) for which f(x) is the product of three
linear factors with integer coefficients.

666. Assume that a face S of a convex polyhedron P has a common edge with every other face of P. Show
that there exists a simple (nonintersecting) closed (not necessarily planar) polygon that consists of edges
of P and passes through all the vertices.

667. Let An be the set of mappings f : {1, 2, 3, · · · , n} −→ {1, 2, 3, · · · , n} such that, if f(k) = i for some i, then
f also assumes all the values 1, 2, · · · , i−1. Prove that the number of elements of An is

∑∞
k=0 kn2−(k+1).
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