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ABCDEF is a regular hexagon of area 1. Determine the area of the region inside the hexagon thst
belongs to none of the triangles ABC', BCD, CDE, EFA and FAB.

ABEF is a parallelogram; C' is a point on the side AE and D a point on the aide BF' for which CD||AB.
The sements C'F and EB intersect at P; the segments ED and AF intersect at (). Prove that PQ|AB.

Solve, for real x,y, z the equation

y2+22—x2+22+x2—y2 x2+y2—227
2yz 2zx 2zy

Two numbers m and n are two perfect squares with four decimal digits. Each digit of m is obtained by
increasing the corresponding digit of n be a fixed positive integer d. What are the possible values of the
pair (m,n).

Let n > 4. The integers from 1 to n inclusive are arranged in some order around a circle. A pair (a,b)
is called acceptable if a < b, a and b are not in adjacent positions around the circle and at least one of
the arcs joining a and b contains only numbers that are less than both a and b. Prove that the number
of acceptable pairs is equal to n — 3.

Suppose that f is a real-valued function defined on the closed unit interval [0, 1] for which f(0) = f(1) =0
and |f(z) — f(y)| < |z —y| when 0 < z <y < 1. Prove that |f(z) — f(y)| < % for all z,y € [0,1]. Can
the number % in the inequality be replaced by a smaller number and still result in a true proposition?
Suppose that ABCD is a convex quadrilateral, and that the respective midpoints of AB, BC', CD, DA
are K, L, M, N. Let O be the intersection point of KM and KN. Thus ABCD is partitioned into
four quadrilaterals. Prove that the sum of the areas of two of these that do not have a common side is
equal to the sum of the areas of the other two, to wit

[AKON] + [CMOL] = [BLOK] + [DNOM] .



