
Solutions for January 2006

423. Prove or disprove: if x and y are real numbers with y ≥ 0 and y(y + 1) ≤ (x + 1)2, then y(y − 1) ≤ x2.

Solution 1. The statement is true. The result holds when y ≤ 1 since y(y− 1) ≤ 0 ≤ x2. Assume y ≥ 1,
so that

√
y(y − 1)− 1 > 0. We have that 4y(y + 1) < (2y + 1)2, so that 2

√
y(y + 1) < 2y + 1. Hence

y(y − 1) < y2 + y − 2
√

y(y + 1) + 1 = (
√

y(y + 1)− 1)2 .

Since y(y + 1) ≤ (x + 1)2 and |x + 1| ≤ |x|+ 1, it follows that

y(y + 1) ≤ (|x|+ 1)2 =⇒
√

y(y + 1)− 1 ≤ |x|

whence
y(y − 1) < |x|2 = x2 .

Thus the assertion holds.

Solution 2. [D. Dziabenko] The statement holds. If 0 ≤ y ≤ 1, then y(y − 1) ≤ 0 ≤ x2. Assume
henceforth that y > 1. If x + 1

2 ≤ y, then

y(y − 1) = y(y + 1)− 2y ≤ (x + 1)2 − 2
(

x +
1
2

)
= x2 .

If x + 1
2 > y, then x > y − 1

2 > 0, whence

x2 >

(
y − 1

2

)2

= y(y − 1) +
1
4

> y(y − 1) .

Solution 3. [G. Ghosn] The result holds. Let y > 0. The region in the cartesian plane defined by
y(y + 1) ≤ (x + 1)2 lies between the x−axis and the upper branch of the hyperbola with equation(

y +
1
2

)2

− (x + 1)2 =
1
4

.

The region in the cartesian plane defined by y(y− 1) ≤ x2 lies between the x−axis and the upper branch of
the hyperbola with equation (

y − 1
2

)2

− x2 =
1
4
.

The second hyperbola lies above the first when x = −1. Thus, if it can be shown that the two hyperbolas do
not intersect, then the top branch of the second hyperbola lies above top branch of the first, and the result
will follow.

But solving y(y+1) = (x+1)2 and y(y−1) = x2 leads to y = x+ 1
2 and ultimately to (x+ 1

2 )2−(x+ 1
2 ) = x2

which has no solution (being equivalent to −1/4 = 0).

424. Simplify
x3 − 3x + (x2 − 1)

√
x2 − 4− 2

x3 − 3x + (x2 − 1)
√

x2 − 4 + 2

to a fraction whose numerator and denominator are of the form u
√

v with u and v each linear polyno-
mials. For which values of x is the equation valid?
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Solution. For a real expression, we require that x2 ≥ 2. Observe that x3 − 3x + 2 = (x− 1)2(x + 2) and
that x3− 3x− 2 = (x + 1)2(x− 2). Thus, the denominator vanishes when x = −2, and we must exclude this
value. Suppose, first, that x ≥ 2. Then

x3 − 3x + (x2 − 1)
√

x2 − 4− 2
x3 − 3x + (x2 − 1)

√
x2 − 4 + 2

=
(x + 1)2(x− 2) + (x2 − 1)

√
x2 − 4

(x− 1)2(x + 2) + (x2 − 1)
√

x2 − 4

=
[(x + 1)

√
x− 2][(x + 1)

√
x− 2 + (x− 1)

√
x + 2]

[(x− 1)
√

x + 2][(x− 1)
√

x + 2 + (x + 1)
√

x− 2]

=
(x + 1)

√
x− 2

(x− 1)
√

x + 2
.

Now suppose that x ≤ −2. Then

x3 − 3x + (x2 − 1)
√

x2 − 4− 2
x3 − 3x + (x2 − 1)

√
x2 − 4 + 2

==
−(x + 1)2(2− x) + (x2 − 1)

√
(2− x)(−2− x)

−(x− 1)2(−2− x) + (x2 − 1)
√

(2− x)(−2− x)

=
[(x + 1)

√
2− x][−(x + 1)

√
2− x + (x− 1)

√
−2− x]

[(1− x)
√
−2− x][(x− 1)

√
−2− x− (x + 1)

√
2− x]

=
(x + 1)

√
2− x

(1− x)
√
−2− x

.

Comment. Most solvers neglected to ensure that the quantities under the radical were nonnegative.
This is the sort of ”easy” question where many marks can be lost because of inattention to detail.

425. Let {x1, x2, · · · , xn, · · ·} be a sequence of nonzero real numbers. Show that the sequence is an arithmetic
progression if and only if, for each integer n ≥ 2,

1
x1x2

+
1

x2x3
+ · · ·+ 1

xn−1xn
=

n− 1
x1xn

.

Solution. A constant sequence is an arithmetic progression and clearly satisfies the condition. Suppose
that the sequence is a nonconstant arithmetic progression with common difference d. Then, for each positive
index i, we have that

d

xixi+1
=

xi+1 − xi

xixi+1
=

1
xi
− 1

xi+1
.

Hence, for each n ≥ 2,

d
n−1∑
i=1

1
xixi+1

=
n−1∑
i=1

(
1
xi
− 1

xi+1

)
=

(
1
x1

− 1
xn

)
=

xn − x1

x1xn
=

(n− 1)d
x1xn

,

from which the condition follows.

On the other hand, suppose that the condition holds. Let d = x2 − x1, and suppose that we have
established that xn − x1 = (n− 1)d (this is true for n = 2). Then, we have that

n

x1xn+1
− n− 1

x1xn
=

1
xnxn+1

so that
nxn − (n− 1)xn+1 = x1 =⇒ (n− 1)(xn+1 − x1) = n(xn − x1) = n(n− 1)d
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from which xn+1 − x1 = nd. It follows, by induction, that the {xn} is an arithmetic progression.

426. (a) The following paper-folding method is proposed for trisecting an acute angle.
(1) transfer the angle to a rectangular sheet so that its vertex is at one corner P of the sheet with

one ray along the edge PY ; let the angle be XPY ;
(2) fold up PY over QZ to fall on RW , so that PQ = QR and PY ‖QZ‖RW , with QZ between PY

and RW ;
(3) fold across a line AC with A on the sheet and C on the edge PY so that P falls on a point P ′

on QZ and R on a point R′ on PX;
(4) suppose that the fold AC intersects the fold QZ at B and carries Q to Q′; make a fold along

BQ′.
It is claimed that the fold BQ′ passes through P and trisects angle XPY .
Explain why the fold described in (3) is possible. Does the method work? Why?

(b) What happens with a right angle?

(c) Can the method be adapted for an obtuse angle?

Solution. [F. Barekat] Let 6 XPY = 3θ. Select B on QZ so that 6 PBR = 4θ and draw the circle with
centre B that passes through P and R. Suppose that this circle intersects QZ at P ′ and XP at R′. Since
6 PBR = 4θ, 6 P ′PY = 6 PP ′Q = 1

2
6 PP ′R = θ. Also, 6 P ′RR′ = 6 XPP ′ = 6 XPY − 6 P ′PY = 2θ, so

that 6 R′RW = 6 P ′RR′ − 6 WRP ′ = θ.

Hence PP ′ and RR′ are parallel chords in the circle, and their right bisectors pass through B and
defines the required fold to interchange P and P ′, and R and R′. Since BP = BP ′, 6 BPY = 6 QBP =
6 BPP ′ + 6 BP ′P = 26 BP ′P = 2θ, so that 6 BPR′ = θ and BP trisects the angle.

The fold (reflection) fixes B and interchanges P and P ′, and Q and Q′. Since P ′, B,Q are collinear, so
are P,B,Q′. Hence the line through B and Q′ also passes through P and so trisects the angle.

(b) When 6 XPY = 90◦, then X lies on PR and R and R′ coincide. We have that PR = P ′R = P ′P ,
so that triangle PP ′R is equilateral and RC is an altitude. Hence Q′ is the midpoint of P ′R and 6 Q′PP ′ =
30◦ = 6 P ′PX.

(c) One way to trisect an obtuse angle is to trisect its supplement, and subtract the result from 60◦..

427. The radius of the inscribed circle and the radii of the three escribed circles of a triangle are consecutive
terms of a geometric progression. Determine the largest angle of the triangle.

Solution 1. [F. Barekat] Let r be the inradius and ra, rb, rc the respective exradii of the circles touching
the sides a, b, c. Let s be the semiperimeter and ∆ the area of the triangle. Recall that

∆ = rs = ra(s− a) = rb(s− b) = rc(s− c)

[derive this], from which
1
ra

+
1
rb

+
1
rc

=
s− a

∆
+

s− b

∆
+

s− c

∆
=

s

∆
=

1
r

so that r is the smallest term in the geometric progression. Suppose that A ≤ B ≤ C. Then

ra = s tan(A/2) ≤ rb = s tan(B/2) ≤ rc = s tan(C/2) .

Hence there is a number t > 1 for which ra = tr, rb = t2r, rc = t3r and s− b = t(s− c), s− a = t2(s− c),
s = t3s. By Heron’s formula,

t3r(s− c) = rc(s− c) = rs = ∆

=
√

s(s− a)(s− b)(s− c) =
√

t6(s− c)4 = t3(s− c)2 .
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Hence r = s− c, and so tan(C/2) = r/(s− c) = 1. Thus C = 90◦.

Solution 2. [D. Dziabenko] Define the symbols as in the first solution. The equation r−1
a +r−1

b +r−1
c = r−1

leads to t3 = t2 + t + 1. Now

∆ =
1
2
ab sinC =

1
2
[(s− b + s− c)(s− a + s− c) sinC

=
1
2
[(t + 1)(t2 + 1)(s− c)2 sinC] = t3(s− c)2 sinC .

On the other hand, by Heron’s formula, we find that

∆ =
√

t6(s− c)4 = t3(s− c)2 .

Comparing the two expressions leads to sinC = 1, so that C = 90◦.

Solution 3. [G. Ghosn; A. Remorov] With r ≤ ra ≤ rb ≤ rc as in the previous solutions and from the
inverse proportionality of r : ra : rb : rc and s : (s−a) : (s− b) : (s− c), we have that (s−a)(s− b) = s(s− c),
whence

ab = (a + b− c)s =⇒ 2ab = (a + b)2 − c2 =⇒ c2 = a2 + b2 .

Hence the triangle is right, and its largest angle, C, is 90◦.

428. a, b and c are three lines in space. Neither a nor b is perpendicular to c. Points P and Q vary on a
and b, respectively, so that PQ is perpendicular to c. The plane through P perpendicular to b meets c
at R, and the plane through Q perpendicular to a meets c at S. Prove that RS is of constant length.

Solution. Let the point P on line a be given by p + su and the point Q on line b be given by q + tv,
where p, q, u and v are fixed vectors and s, t parameters determining the points. Let r be a point on c and
w be the direction vector for c. Wolog, we can normalize u and v so that u ·w = v ·w = 1.

By hypothesis, [(p + su)− (q + tv] ·w = 0, whence s− t = (q− p) ·w. Let R be given by r + mw and
S by r + nw. Then

[(p + su)− (r + mw)] · v = 0

so that m = (p− r) · v + s(u · v). Also

[(q + tv)− (r + mw)] · u = 0

so that n = (q− r) · u + t(v · u). Hence

m− n = (p− r).v − (q− r).u + (u · v)[(q− p).w

is independent of s and t and the result follows.

429. Prove that
n∑

k=1

(−1)k+1

(
n

k

)(
kn

n

)
= (−1)n+1nn .

Solution 1. Let f(x) = (1− (1 + x)n)n. Since (1− (1 + x)n) = −nx + x2g(x), for some polynomial g(x),
we have that

f(x) = (−1)nnnxn + xn+1h(x)
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for some polymonial h(x). On the other hand,

f(x) =
n∑

k=0

(−1)k

(
n

k

)
(1 + x)nk

=
n∑

k=0

(−1)k

(
n

k

) nk∑
j=0

(
nk

j

)
xj

=
n2∑

j=0

[ n∑
k=dj/ne

(−1)k

(
n

k

)(
nk

j

)]
xj .

Comparing the coefficients of xn in the two expressions for f(x) yields that (−1)nnn =
∑n

k=1(−1)k
(
n
k

)(
nk
n

)
,

from which the desired result follows.

Solution 2. Consider a set of n2 distinct objects arranged in a n×n square array. There are nn ways of
choosing n of them so that one is chosen from each row. We count this in a different way, using the Principle
of Inclusion-Exclusion. Let f(r) be the number of ways of selecting the n objects so that they come from at
most r distinct rows. There are

(
n
r

)
ways of selecting the r rows containing the objects, and rn objects to

choose from. Hence f(r) =
(
n
r

)(
rn
n

)
. [Note that this doublecounts choices involving fewer than r rows.]

There are f(n) =
(
n2

n

)
ways of choosing n objects from the array without restriction. But this includes

the f(n− 1) selections where they are drawn from at most n− 1 rows. But then f(n)− f(n− 1) subtracts
off those from n−2 rows twice, so we need to add f(n−2) back. But then, in f(n)− f(n−1)+ f(n−2), we
have added in each selection from n− 3 rows

(
3
3

)
times in f(n), subtracted in

(
3
2

)
times in f(n− 1), added

it back
(
3
1

)
times. So we need to add it back. Continuing in this way, we find that

nn =
n∑

k=0

(−1)n−kf(k) =
n∑

k=0

(−1)n−k

(
n

k

)(
kn

k

)
from which the desired result follows.

Solution 4. [G. Ghosn] Let P (x) = (xn − 1)n =
∑n

k=0

(
n
k

)
xkn(−1)n−k. We calculate the nth derivative

of the two expressions.

Recall Leibniz’ Rule that Dn(QR) =
∑n

k=0

(
n
k

)
Dn−k(Q)Dk(R). Taking Q(x) = (x − 1)n and R(x) =

(xn−1 + xn−2 + · · ·+ 1)n, we have that

Dn[(xn − 1)n] = Dn[(x− 1)n(xn−1 + · · ·+ x + 1)n]

= n!(xn−1 + · · ·+ x + 1)n + (x− 1)S(x) ,

for some polynomial S(x). When x = 1, this takes the value n!nn.

On the other hand,

Dn

[ n∑
k=0

(−1)n−k

(
n

k

)
xkn

]
=

n∑
k=0

(−1)n−k

(
n

k

)
(kn)(kn− 1) · · · (kn− n + 1)xkn−n

=
n∑

k=0

(−1)n−k

(
n

k

)
(kn)!

(kn− n)!
xkn−n

=
n∑

k=0

(−1)n−k

(
n

k

)(
kn

n

)
n!xkn−n .

When x = 1, this takes the value n!
∑n

k=0(−1)n−k
(
n
k

)(
kn
n

)
. The desired result follows.
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