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423. Prove or disprove: if x and y are real numbers with y ≥ 0 and y(y + 1) ≤ (x + 1)2, then y(y − 1) ≤ x2.

424. Simplify
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√
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√

x2 − 4 + 2

to a fraction whose numerator and denominator are of the form u
√

v with u and v each linear polyno-
mials. For which values of x is the equation valid?

425. Let {x1, x2, · · · , xn, · · ·} be a sequence of nonzero real numbers. Show that the sequence is an arithmetic
progression if and only if, for each integer n ≥ 2,
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426. (a) The following paper-folding method is proposed for trisecting an acute angle.
(1) transfer the angle to a rectangular sheet so that its vertex is at one corner P of the sheet with

one ray along the edge PY ; let the angle be XPY ;
(2) fold up PY over QZ to fall on RW , so that PQ = QR and PY ‖QZ‖RW , with QZ between PY

and RW ;
(3) fold across a line AC with A on the sheet and C on the edge PY so that P falls on a point P ′

on QZ and R on a point R′ on PX;
(4) suppose that the fold AC intersects the fold QZ at B and carries Q to Q′; make a fold along

BQ′.
It is claimed that the fold BQ′ passes through P and trisects angle XPY .
Explain why the fold described in (3) is possible. Does the method work? Why?

(b) What happens with a right angle?

(c) Can the method be adapted for an obtuse angle?

427. The radius of the inscribed circle and the radii of the three escribed circles of a triangle are consecutive
terms of a geometric progression. Determine the largest angle of the triangle.

428. a, b and c are three lines in space. Neither a nor b is perpendicular to c. Points P and Q vary on a
and b, respectively, so that PQ is perpendicular to c. The plane through P perpendicular to b meets c
at R, and the plane through Q perpendicular to a meets c at S. Prove that RS is of constant length.

429. Prove that
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