
Solutions to March problems.

367. Let a and c be fixed real numbers satisfying a ≤ 1 ≤ c. Determine the largest value of b that is consistent
with the condition

a + bc ≤ b + ac ≤ c + ab .

Solution. Since (b + ac) − (a + bc) = (a − b)(c − 1) and (c + ab) − (b + ac) = (c − b)(1 − a), the given
inequalities are equivalent to (a− b)(c− 1) ≥ 0 and (c− b)(1− a) ≥ 0.

If a = c = 1, then the inequalites hold for any value of b, and there is no maximum value. If a < 1 = c,
then the first inequality is automatic and the inequalities hold if and only if b ≤ c = 1. If 1 < c, then
a ≤ 1 < c and the two inequalities are equivalent to a ≥ b and c ≥ b, which both hold if and only if a ≥ b.
Thus, when 1 < c, the maximum value of b for which the inequalities hold is a. ♠

368. Let A,B,C be three distinct points of the plane for which AB = AC. Describe the locus of the point
P for which 6 APB = 6 APC.

Solution 1. We observe that P cannot be any of A, B, C, as the angles become degenerate, so that
A, B and C must be excluded from the locus. Suppose first that A, B, C are collinear, so that A is the
midpoint of BC. For a point P on the locus for which the triangle PBC is nondegenerate, the median PA
of the triangle PBC bisects the angle BPC. Therefore PB = PC (note that PB : PC = AB : AC = 1 : 1)
and so P must lie on the right bisector of BC. Conversely, any point on the righ bisector save B is on the
locus. If the triangle PBC is degenerate, then P must lie on the line BC outside of the closed interval BC
(in which case 6 APB = 6 APC).

Henceforth, assume that the points ABC are not collinear. The locus does not contain any of the points
A, B and C. If P is a point on the open arc BC of the circumcircle of ABC that does not contain A, then
ABPC is concyclic and

6 APB = 6 ACB = 6 ABC = 6 APC .

(More briefly, the angles subtended at P be the equal chords AB and AC are equal. Why are they not
supplementary?) If P is any point, except A, on the right bisector of BC, then, by a reflection in this
bisector, we see that 6 APB = 6 APC. Finally, if P is any point on the BC outside of the closed segment
BC, then 6 APB = 6 APC since P,B,C are collinear. Thus, the locus must contain the following three sets:
(1) all points on the open arc BC of the circumcircle of ABC that does not contain A; (2) all points on the
right bisector of BC except for A; (3) all points on the line BC than do not lie between B and C inclusive.

We show that there are no further points in the locus. Suppose that P lies in the angle formed by AB
and AC that includes the right bisector of BC, but that P does not lie on this bisector. Let Q (distinct
from P ) be the reflection of P in the right bisector. Then 6 APB = 6 AQC and 6 APC = 6 AQB. Suppose
that 6 APB = 6 APC. Then 6 APC = 6 AQC and 6 APB = 6 AQB, so that A,B, P, Q, C are concyclic
and we must have situation (i). If P lies in the angle exterior to triangle ABC determined by AB and AC
produced, then it can be checked that one of the angles APB and APC properly contains the other. The
result follows.

Solution 2. If A,B,C are collinear, wolog suppose that P is a point of the locus not on BC for which
PB < PC and D is the reflected image of B with respect to PA. Then AD = BA = AC and D lies on the
segment PC. Hence 6 PBA + 6 PCB = 6 PDA + 6 DCA = 6 PDA + 6 ADC = 180◦, so that 6 BPC = 0◦,
a contradiction. Hence P must lie on BC or the right bisector of BC, We can eliminate from the locus all
points on the closed segment BC as well as the point A.

Suppose A, B and C are not collinear. Let P be a point on the locus. Consider triangle ABP and
ACP . Since AB = AC, AP is common and the (noncontained) corresponding angles APB and APC are
equal, we have the ambiguous (SSA) case and so either triangles APB and APC are congruent, or else
6 ABP + 6 ACP = 180◦. If the triangles are conguent, then PB = PC and P lies on the right bisector of
BC,
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If 6 ABP + 6 ACP = 180◦, then there are two possibilities. Either B and C lie on the same side of AP ,
in which case P,B,C are collinear or B and C lie on opposite sides of AP , in which case ABPC is concyclic.

Hence the locus is contained in the union of the right bisector of BC, that part of the line BC not
between B and C and the arc BC of the circumcircle of triangle ABC not containing A. Conversely, it is
straightforward to verify that every point in this union, except for A, B and C is on the locus.

Comment. Another way in is to apply the law of sines on triangles ABP and ACP and note that

sinABP

|AP |
=

sin 6 APB

|AB|
=

sin 6 APC

|AC|
=

sin 6 ACP

|AP |
,

so that sin 6 ABP = sin 6 ACP . Thus, either 6 ABP = 6 ACP or 6 ABP + 6 ACP = 180◦.

369. ABCD is a rectangle and APQ is an inscribed equilateral triangle for which P lies on BC and Q lies
on CD.
(a) For which rectangles is the configuration possible?
(b) Prove that, when the configuration is possible, then the area of triangle CPQ is equal to the sum
of the areas of the triangles ABP and ADQ.

Solution 1. (a) Let the configuration be given and let the length of the side of the equilateral triangle
be 1. Suppose that 6 BAP = θ. Then |AB| = cos θ and |AD| = cos(30◦ − θ). Observe that 0 ≤ θ ≤ 30◦.
Then

|AD|
|AB|

=
cos 30◦ cos θ + sin 30◦ sin θ

cos θ
=
√

3 + tan θ

2
.

Since 0 ≤ tan θ ≤ 1/
√

3, it follows that √
3

2
≤ |AD|
|AB|

≤ 2√
3

.

(Alternatively, note that cos(30◦ − θ) increases and cos θ decreases with θ, so that

cos 30◦

cos 0◦
≤ |AD|
|AB|

≤ cos 0◦

cos 30◦
.)

Conversely, supposing that this condition is satisfied, we can solve |AD|/|AB| = 1
2 (
√

3 + tan θ) for a
value of θ ∈ [0, 30◦] and determine a configuration for which 6 BAP = θ and 6 DAQ = 30◦ − θ. It can be
checked that AP = AQ (do this!).

(b) Suppose that the configuration is given, and that L, M and N are the respective midpoints of AP ,
PQ and QA. Wolog, let the lengths of these three segments be 2. Then BL, CM and DN all have length
1 (why?). Since 6 BLP = 2θ, 6 CMQ = 60◦ + 2θ and 6 DNQ = 60◦ − 2θ, we find that (from the areas of
triangles like BLP ),

[CPQ]− [ADQ]− [ABP ] = sin(60◦ + 2θ)− sin(60◦ − 2θ)− sin 2θ

= 2 cos 60◦ sin 2θ − sin 2θ = 0 ,

so that the result holds.

Comment. One can also get the areas of the corner right triangles by taking half the product of their
arms. For example,

[BAP ] =
1
2
(2 sin θ)(2 cos θ) = 2 sin θ cos θ = sin 2θ .

370. A deck of cards has nk cards, n cards of each of the colours C1, C2, · · ·, Ck. The deck is thoroughly
shuffled and dealt into k piles of n cards each, P1, P2, · · ·, Pk. A game of solitaire proceeds as follows:
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The top card is drawn from pile P1. If it has colour Ci, it is discarded and the top card is drawn from
pile Pi. If it has colour Cj , it is discarded and the top card is drawn from pile Pj . The game continues
in this way, and will terminate when the nth card of colour C1 is drawn and discarded, as at this point,
there are no further cards left in pile P1. What is the probability that every card is discarded when the
game terminates?

Solution. We begin by determining a one-one correspondence between plays of the game and the (nk)!
arrangements of the nk cards. For each play of the game, we set the cards aside in the order than they
appear. If the game is finishes with the last card, we go through the whole deck and obtain an arrangement
in which the last card has colour C1. If the game finishes early, then we have exhausted the pile P1, but not
all of the remaining pile; all the colours C1’s will have appeared among the first nk − 1 cards. We continue
the arrangement by dealing out in order all the cards in the pile P2, then all the cards in the pile P3 and so
on.

Conversely, suppose that we have an arrangement of the nk cards. We reconstruct a game. Look at
all the cards up to the last card of colour C1. Suppose that it contains xi cards of colour Ci; then that
means that there are n − xi cards that should not be turned over in pile Pi. Take the last n − xk cards
of the arrangement and place them in pile Pk, and then the next last n − xk−1 cards and place them in
pile Pk−1, and so on until we come down to pile P2. We have backed up in the arrangement to the last
card of colour C1, and its predecessor determines from which pile it was drawn; restore it to that pile. For
2 ≤ i ≤ x1 + x2 + · · · + xk, place the ith card in the arrangement on the pile of the colour of the (i − 1)th
card. Finally, when we get to the first card of the arrangement, all the piles except P1 have been restored
to n cards; place this card on P1.

Thus, each game determines an arrangement, and each arrangement a game. Therefore, the desired
probability is the probability that in an arbitrary arrangement, the last card has colour C1. As the probability
is the same for each of the colours, the desired probability is 1/k.

371. Let X be a point on the side BC of triangle ABC and Y the point where the line AX meets the
circumcircle of triangle ABC. Prove or disprove: if the length of XY is maximum, then AX lies
between the median from A and the bisector of angle BAC.

Solution. [F. Barekat] Wolog, suppose that AB ≥ AC. Let M be the midpoint of BC and N where
AM intersect the circumcircle. Let P on BC be the foot of the angle bisector of 6 BAC and let AP intersect
the circumcircle at Q. Then BC is partitioned into three segments: BM , MP , PC.

Suppose that X is on the segment BM and that AX meets the circumcircle in Y . Let U on the segment
MC satisfy XM = MU and let AU meet the circumcircle in V then

AX ·XY = BX ·XC = CU · UB = AU · UV .

Now AX ≥ AU (one way to see this is to drop a perpendicular from A to XU and use Pythagoras’ theorem).
Hence XY ≤ UV , so the maximizing point must lie between M and C.

Now let X lie between P and C. Construct R so that PXY R is a parallelogram. Since Q is the
midpoint of the arc BC, the tangent at Q to the circumcircle is parallel to BC and so R lies within the
circle, 6 PQR ≤ 6 AQY and 6 QPR = 6 QAY . Therefore

6 PRQ = 180◦ − 6 QPR− 6 PQR ≥ 180◦ − 6 QAY − 6 AQY

= 6 AY Q = 6 ACQ = 6 ACB + 6 BCQ

= 6 ACB + 6 BAQ = 6 ACB +
1
2
6 BAC

=
1
2
(26 ACB + 6 BAC) ≥ 1

2
(6 ACB + 6 ABC + 6 BAC) = 90◦ .

Therefore PQ ≥ PR = XY . It follows that XY assumes its maximum value when X is between M and P ,
as desired.
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372. Let bn be the number of integers whose digits are all 1, 3, 4 and whose digits sum to n. Prove that bn

is a perfect square when n is even.

Solution 1. It is readily checked that b1 = b2 = 1, b3 = 2 and b4 = 4. Consider numbers whose digits
sum to n ≥ 5. There are bn−1 of them ending in 1, bn−3 of them ending in 3, and bn−4 of them ending in 4.
We prove by induction, that for each positive integer m,

b2m = f2
m+1 and b2m−1 = fm+1fm ,

where {fn} is the Fibonacci sequences defined by f0 = 0, f1 = 1 and fn+1 = fn + fn−1 for n ≥ 1.

The result holds for m = 1. Suppose that it holds up to m = k. Then

b2k+1 = b2k + b2k−2 + b2k−3 = f2
k+1 + f2

k + fkfk−1

= f2
k+1 + fk(fk + fk−1) = f2

k+1 + fkfk+1

= fk+1(fk+1 + fk) = fk+1fk+2 ,

and
b2(k+1) = b2k+1 + b2k−1 + b2k−2 = fk+2fk+1 + fk+1fk + f2

k

= fk+2fk+1 + (fk+1 + fk)fk

= fk+2fk+1 + fk+2fk = fk+2(fk+1 + fk) = f2
k+2 .

The result follows.

Solution 2. As before, bn = bn−1 + bn−3 + bn−4. From this, we see that

bn = (bn−2 + bn−4 + bn−5) + (bn−2 − bn−5 − bn−6) + bn−4 = 2bn−2 + 2bn−4 − bn−6 ,

for n ≥ 7. Also, for n ≥ 4,

f2
n = (fn−1 + fn−2)2 = 2f2

n−1 + 2f2
n−2 − (fn−1 − fn−2)2 = 2f2

n−1 + 2f2
n−2 − f2

n−3 .

By induction, it can be shown that b2m = f2
m+1 for each positive integer m (do it!).

373. For each positive integer n, define

an = 1 + 22 + 33 + · · ·+ nn .

Prove that there are infinitely many values of n for which an is an odd composite number.

Solution. Modulo 3, it can be verified that nn ≡ 0 for n ≡ 0 (mod 3), nn ≡ 1 for n ≡ 1, 2, 4 (mod
6), and nn ≡ 2 for n ≡ 5 (mod 6). It follows from this that the sum of any six consecutive values of nn is
congruent to 2 (mod 3), and so the sum of any eighteen consecutive values of nn is congruent to 0 (mod 3).
Since such a sum contains nine odd summands, it must be odd. The sum of any thirty-six consecutive values
of nn contains eighteen odd summands and so is even. It follows that the sum of any thirty-six consecutive
values of nn is a multiple of 6.

It is readily checked that an ≡ 0 (mod 3) when n = 4, 7, 14, 15, 17, 18. Observe that a4, a7, a15 are even
and a14, a17, a18 are odd. Hence an is an odd multiple of 3 whenever n ≡ 14, 17, 18, 22, 25, 33 (mod 36).
These numbers are all odd and composite.

Comment. A similar argument can be had for any odd prime p. What is the period of nn?
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